A Robust approach for the identification of synchronous machine parameters and dynamic states based on PMU data

被引:8
|
作者
Zimmer, V. [1 ]
Decker, I. C. [1 ]
e Silva, A. S. [1 ]
机构
[1] Univ Fed Santa Catarina, Dept Elect Engn, Florianopolis, SC, Brazil
关键词
Model validation; Parameter identification; Hybrid dynamic simulation; PMU data; Synchronous generator; ONLINE IDENTIFICATION; MODEL VALIDATION; GENERATOR; EXCITATION;
D O I
10.1016/j.epsr.2018.09.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper an approach for on-line identification of parameters and dynamic states of synchronous generator, is proposed. Synchrophasors data and Hybrid Dynamic Simulation provide the trajectories deviations caused by parameters errors. Simulated variables are combined with measurements to obtain Hybrid Trajectory Sensibility Functions (HTSF), which are used in the identification process based on Nonlinear Least Squares. This approach simplifies the calculation of HTSF. Constraints on the parameters range are enforced and the resulting constrained optimization problems is solved by a Primal-Dual Interior Points method. This solution is discussed in the paper. The method is applied to synthetic data and to a large generator of the Itaipu power plant.
引用
收藏
页码:167 / 178
页数:12
相关论文
共 50 条
  • [41] Nonlinear Estimation of Synchronous Machine Parameters Using Operating Data
    Valverde, Gustavo
    Kyriakides, Elias
    Heydt, Gerald T.
    Terzija, Vladimir
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2011, 26 (03) : 831 - 839
  • [42] A Robust Spectral Clustering Method Based on PMU Measurements for Coherent Areas Identification
    Liccardo, Annalisa
    Lauria, Davide
    Bonavolonta, Francesco
    Giannuzzi, Giorgio Maria
    Pisani, Cosimo
    Tessitore, Salvatore
    IEEE ACCESS, 2023, 11 : 121445 - 121456
  • [43] Parameter Identification of Permanent Magnet Synchronous Machine Based on an Adaptive Mutation Dynamic Differential Evolution
    Wu, Lianghong
    Liu, Zhao-Hua
    Wei, Hua-Liang
    Zhong, Qing-Chang
    Xiao, Xiao-Shi
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2017, 139 (06):
  • [44] SYNCHRONOUS MACHINE PARAMETER-IDENTIFICATION - A TIME DOMAIN APPROACH
    LE, LX
    WILSON, WJ
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 1988, 3 (02) : 241 - 248
  • [45] Permanent Magnet Synchronous Machine Parameters Identification for Load Characteristics Calculation
    Cerovsky, Zdenek
    Lev, Miroslav
    AUTOMATIKA, 2015, 56 (02) : 217 - 225
  • [46] Robust identification of email tracking: A machine learning approach
    Haupt, Johannes
    Bender, Benedict
    Fabian, Benjamin
    Lessmann, Stefan
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 271 (01) : 341 - 356
  • [47] A Robust Machine Learning Approach to Microprocessor Instructions Identification
    Tsague, Hippolyte Djonon
    Twala, Bheki
    ADVANCES IN SOFT COMPUTING, MICAI 2016, PT II, 2017, 10062 : 248 - 258
  • [48] Development of Efficient and Robust Methods for Estimation of Transmission Line Parameters Using Synchronized PMU Data
    Lahmar, Mustafa
    Liao, Yuan
    IEEE SOUTHEASTCON 2018, 2018,
  • [49] Online Dynamic Security Assessment With Missing PMU Measurements: A Data Mining Approach
    He, Miao
    Vittal, Vijay
    Zhang, Junshan
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (02) : 1969 - 1977
  • [50] Dynamic identification of a synchronous machine using an extended sliding mode observer
    Meghnous, A. R.
    Pham, M. T.
    Lin-Shi, X.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2013, 90 : 45 - 59