Whole mung bean (Vigna radiata L.) supplementation prevents high-fat diet-induced obesity and disorders in a lipid profile and modulates gut microbiota in mice

被引:40
|
作者
Hou, Dianzhi [1 ,2 ,3 ]
Zhao, Qingyu [1 ,2 ,3 ]
Yousaf, Laraib [1 ,2 ,3 ]
Xue, Yong [1 ,2 ,3 ]
Shen, Qun [1 ,2 ,3 ]
机构
[1] China Agr Univ, Coll Food Sci & Nutr Engn, 17 Qinghua East Rd, Beijing 100083, Peoples R China
[2] Natl Engn Res Ctr Fruit & Vegetable Proc, Beijing 100083, Peoples R China
[3] China Agr Univ, Key Lab Plant Prot & Grain Proc, Beijing 100083, Peoples R China
关键词
Whole mung bean; Decorticated mung bean; Obesity; Lipid disorders; Gut microbiota; ANTIOXIDANT; CONSUMPTION; FIBER; PROTEIN; HEALTH; GRAINS; POLYPHENOLS; METABOLISM; EXTRACTS; PULSES;
D O I
10.1007/s00394-020-02196-2
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Purpose Obesity, a strong risk factor for metabolic disorder, has become a major impediment for public health globally. The objective of this study was to assess the anti-obesity effect of mung bean, and the relationship between the gut microbiota modulatory effects of mung bean and the prevention of obesity. Methods Thirty-two four-week-old male C57BL/6 J mice were divided into four groups: normal chow diet (NCD), high-fat diet (HFD), a high-fat diet supplemented with 30% whole mung bean flour (HFD-WMB), and a high-fat diet supplemented with 30% decorticated mung bean flour (HFD-DMB). The ability of a mung bean-based diet to combat obesity-related metabolic disorder was determined by assessing the changes in physiological, histological, biochemical parameters, and gut microbiota composition of mice with HFD-induced obesity at 12 weeks. Results Both of WMB and DMB supplementation can effectively alleviate HFD-induced lipid metabolic disorders, which was accompanied by a reduction in hepatic steatosis. However, the only supplementation with WMB significantly reduced HFD-induced body weight gain, fat accumulation, and adipocyte size, and ameliorated the glucose tolerance and insulin resistance by sensitizing insulin action. Furthermore, high-throughput pyrosequencing of 16S rRNA revealed that WMB and DMB supplementation could normalize HFD-induced gut microbiota dysbiosis. Especially, WMB and DMB supplementation significantly promoted the relative abundance of Akkermansia and Bifidobacterium, respectively, and both of them significantly restored the relative abundance of several HFD-dependent taxa back to normal status in this study. Spearman's correlation analysis revealed that those genera are closely correlated with obesity-related indices. Conclusions Although WMB showed better beneficial effects on HFD-induced obesity in comparison with DMB, DMB still retained some health benefits. Moreover, the alleviation of HFD-induced changes by mung bean supplementation was, at least, partially conciliated by structural modulation of gut microbiota.
引用
收藏
页码:3617 / 3634
页数:18
相关论文
共 50 条
  • [31] Sodium alginate and galactooligosaccharides ameliorate metabolic disorders and alter the composition of the gut microbiota in mice with high-fat diet-induced obesity
    Li, Yao
    Huang, Juan
    Zhang, Silu
    Yang, Fan
    Zhou, Haolin
    Song, Yang
    Wang, Bing
    Li, Huajun
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 215 : 113 - 122
  • [32] Puerarin Modulates Hepatic Farnesoid X Receptor and Gut Microbiota in High-Fat Diet-Induced Obese Mice
    Yang, Ching-Wei
    Liu, Hsuan-Miao
    Chang, Zi-Yu
    Liu, Geng-Hao
    Chang, Hen-Hong
    Huang, Po-Yu
    Lee, Tzung-Yan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [33] Daily Supplementation with Fresh Angelica keiskei Juice Alleviates High-Fat Diet-Induced Obesity in Mice by Modulating Gut Microbiota Composition
    Zhang, Chengcheng
    Wu, Weicheng
    Li, Xiaoqiong
    Xin, Xiaoting
    Liu, Daqun
    MOLECULAR NUTRITION & FOOD RESEARCH, 2019, 63 (14)
  • [34] Diet Change Improves Obesity and Lipid Deposition in High-Fat Diet-Induced Mice
    Ji, Tengteng
    Fang, Bing
    Wu, Fang
    Liu, Yaqiong
    Cheng, Le
    Li, Yixuan
    Wang, Ran
    Zhu, Longjiao
    NUTRIENTS, 2023, 15 (23)
  • [35] Celastrol inhibits intestinal lipid absorption by reprofiling the gut microbiota to attenuate high-fat diet-induced obesity
    Hua, Hu
    Zhang, Yue
    Zhao, Fei
    Chen, Ke
    Wu, Tong
    Liu, Qianqi
    Huang, Songming
    Zhang, Aihua
    Jia, Zhanjun
    ISCIENCE, 2021, 24 (02)
  • [36] Effect of Hesperidin Supplementation on Liver Metabolomics and Gut Microbiota in a High-Fat Diet-Induced NAFLD Mice Model
    Li, Xiaoping
    Yao, Yexuan
    Wang, Yu
    Hua, Lun
    Wu, Min
    Chen, Fang
    Deng, Ze-Yuan
    Luo, Ting
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2022, 70 (36) : 11224 - 11235
  • [37] Parboiled rice supplementation alleviates high-fat diet-induced hyperlipidemia by regulating genes and gut microbiota in mice
    Wu, Xiuxiu
    Guo, Tianyi
    Li, Biao
    Han, Shuai
    Hu, Zuomin
    Luo, Yi
    Qin, Dandan
    Zhou, Yaping
    Luo, Feijun
    Lin, Qinlu
    FOOD SCIENCE AND HUMAN WELLNESS, 2024, 13 (03) : 1422 - 1438
  • [38] Parboiled rice supplementation alleviates high-fat diet-induced hyperlipidemia by regulating genes and gut microbiota in mice
    Xiuxiu Wu
    Tianyi Guo
    Biao Li
    Shuai Han
    Zuomin Hu
    Yi Luo
    Dandan Qin
    Yaping Zhou
    Feijun Luo
    Qinlu Lin
    FoodScienceandHumanWellness, 2024, 13 (03) : 1422 - 1438
  • [39] Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice
    Campbell, C. Linda
    Yu, Renqiang
    Li, Fengzhi
    Zhou, Qin
    Chen, Daozhen
    Qi, Ce
    Yin, Yongxiang
    Sun, Jin
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2019, 12 : 97 - 107
  • [40] Modulation of the gut microbiota by the mixture of fish oil and krill oil in high-fat diet-induced obesity mice
    Cui, Chenxi
    Li, Yanyan
    Gao, Hang
    Zhang, Hongyan
    Han, Jiaojiao
    Zhang, Dijun
    Li, Ye
    Zhou, Jun
    Lu, Chenyang
    Su, Xiurong
    PLOS ONE, 2017, 12 (10):