Chaotic and power law turbulent states in jerky flow

被引:1
|
作者
Ananthakrishna, G [1 ]
Bharathi, MS
机构
[1] Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Ctr Condensed Matter Theory, Bangalore 560012, Karnataka, India
关键词
D O I
10.1238/Physica.Topical.106a00082
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent studies on the Portevin-Le Chatelier effect report an intriguing crossover phenomenon from a low dimensional chaotic to an infinite dimensional scale invariant power law regime in experiments on CuAl single crystals and AlMg polycrystals, as a function of strain rate. We devise a fully dynamical model which reproduces this crossover. At low and medium strain rates, the model is chaotic with the structure of the attractor resembling the reconstructed experimental attractor. At high strain rates, power law statistics for the magnitudes and durations of the stress drops emerge as in experiments and concomitantly, the largest Lyapunov exponent is zero.
引用
收藏
页码:82 / 88
页数:7
相关论文
共 50 条
  • [31] Friction factor power law with equivalent log law, of a turbulent fully developed flow, in a fully smooth pipe
    Noor Afzal
    Abu Seena
    A. Bushra
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [32] Optimal Reactive Power Dispatch Using a Chaotic Turbulent Flow of Water-Based Optimization Algorithm
    Abd-El Wahab, Ahmed M.
    Kamel, Salah
    Hassan, Mohamed H.
    Mosaad, Mohamed I.
    AbdulFattah, Tarek A.
    MATHEMATICS, 2022, 10 (03)
  • [33] ON THE EXISTENCE OF CHAOS IN JERKY FLOW
    ANANTHAKRISHNA, G
    FRESSENGEAS, C
    GROSBRAS, M
    VERGNOL, J
    ENGELKE, C
    PLESSING, J
    NEUHAUSER, H
    BOUCHAUD, E
    PLANES, J
    KUBIN, LP
    SCRIPTA METALLURGICA ET MATERIALIA, 1995, 32 (11): : 1731 - 1737
  • [34] New approaches to jerky flow
    Kubin, LP
    Ananthakrishna, G
    Bréchet, Y
    Estrin, Y
    Fressengeas, C
    Lebyodkin, M
    INTEGRATION OF MATERIAL, PROCESS AND PRODUCT DESIGN, 1999, : 85 - 92
  • [35] Skin friction law for compressible turbulent flow
    Barnwell, Richard W., 1600, (29):
  • [36] Law of the wall of rotating turbulent shear flow
    Park, JY
    Chung, MK
    PHYSICS OF FLUIDS, 2005, 17 (09) : 1 - 4
  • [37] A POWER WIND LAW FOR TURBULENT TRANSFER COMPUTATIONS
    BRUTSAERT, W
    YEH, GT
    WATER RESOURCES RESEARCH, 1970, 6 (05) : 1387 - +
  • [38] POWER LAW FOR TURBULENT CYLINDRICAL BOUNDARY LAYERS
    JOSEPH, MC
    MCCORQUO.JA
    SRIDHAR, K
    AERONAUTICAL JOURNAL, 1971, 75 (721): : 46 - &
  • [39] POWER LAW COMPARISON FOR TURBULENT TEMPERATURE SPECTRA
    CLAY, JP
    GIBSON, CH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1089 - 1089
  • [40] A NEW VELOCITY PROFILE MODEL FOR TURBULENT PIPE-FLOW OF POWER-LAW FLUIDS
    SHENOY, AV
    SAINI, DR
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1982, 60 (05): : 694 - 696