Semicopositive linear complementarity systems

被引:18
|
作者
Shen, Jinglai
Pang, Jong-Shi [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[2] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
关键词
linear complementarity systems; observability; time stepping; matrix classes; well-posedness;
D O I
10.1002/rnc.1172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Inspired by the dynamic complementarity problem introduced by Mandelbaum, we define several matrix classes in terms of some integral conditions and discuss their connection with the existing class of strictly sernicopositive matrices in linear complementarity theory. Using a time-stepping approximation scheme, we establish the existence of an integrable solution to a class of index-one linear complementarity systems (LCSs) involving these matrices, and that such a solution is 'short-time' unique if the initial state belongs to a semiobservable cone defined in the recent paper (IEEE Trans. Autom. Control 2007, in press). In contrast to the existing well-posedness theory for the LCS, our result is based on a well-known matrix property that has not been used in the LCS literature before. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:1367 / 1386
页数:20
相关论文
共 50 条
  • [11] Complementarity and passivity for piecewise linear feedback systems
    Iannelli, Luigi
    Vasca, Francesco
    Camlibel, Kanat
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 4216 - +
  • [12] ON THE CONNECTEDNESS OF THE SOLUTION SET TO LINEAR COMPLEMENTARITY SYSTEMS
    RAPCSAK, T
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 80 (03) : 501 - 512
  • [13] Reorienting Linear Complementarity Systems using Feedback
    Priyadarshan, H.
    Pillai, Harish K.
    2009 IEEE CONTROL APPLICATIONS CCA & INTELLIGENT CONTROL (ISIC), VOLS 1-3, 2009, : 1099 - 1104
  • [14] Inverse eigenvalue problems for linear complementarity systems
    Seeger, Alberto
    Vicente-Perez, Jose
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (12) : 3029 - 3044
  • [15] Between mathematical programming and systems theory: Linear complementarity systems
    Schumacher, H
    ADVANCES IN MATHEMATICAL SYSTEMS THEORY: A VOLUME IN HONOR OF DIEDERICH HINRICHSEN, 2001, : 185 - 219
  • [16] Observer-based control of linear complementarity systems
    Heemels, W. P. M. H.
    Camlibel, M. K.
    Brogliato, B.
    Schumacher, J. M.
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2008, 4981 : 259 - +
  • [17] Stability and controllability of planar bimodal linear complementarity systems
    Çamlibel, MK
    Heemels, WPMH
    Schumacher, JM
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 1651 - 1656
  • [18] Prelimenary results on the optimal control of linear complementarity systems
    Vieira, Alexandre
    Brogliato, Bernard
    Prieur, Christophe
    IFAC PAPERSONLINE, 2017, 50 (01): : 2977 - 2982
  • [19] Stability analysis of equilibria of linear delay complementarity systems
    Biemond J.J.B.
    Michiels W.
    Van De Wouw N.
    IEEE Control Systems Letters, 2017, 1 (01): : 158 - 163
  • [20] Observer-based control of linear complementarity systems
    Heemels, W. P. M. H.
    Camlibel, M. K.
    Schumacher, J. M.
    Brogliato, B.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (10) : 1193 - 1218