Parallel Dichotomy Algorithm for solving tridiagonal system of linear equations with multiple right-hand sides

被引:15
|
作者
Terekhov, Andrew V. [1 ,2 ,3 ]
机构
[1] Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia
[2] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
[3] Novosibirsk State Univ, Novosibirsk 630090, Russia
关键词
Parallel algorithm; Tridiagonal matrix algorithm (TDMA); Thomas algorithm; Poisson equation; Alternating direction method; Fourier method;
D O I
10.1016/j.parco.2010.02.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A parallel algorithm for solving a series of matrix equations with a constant tridiagonal matrix and different right-hand sides is proposed and studied. The process of solving the problem is represented in two steps. The first preliminary step is calculating some rows of the inverse matrix of system of linear algebraic equations. The second step consists in calculating solutions for all right-hand sides. For reducing the communication interactions, based on the formulated and proved the main Gaussian Parallel Elimination Theorem for tridiagonal system of equations, we propose an original algorithm for calculating share components of the solution vector. Theoretical estimates validating the efficiency of the approach for both the common- and distributed-memory supercomputers are obtained. Direct and iterative methods of solving a 2D Poisson equation, which include procedures of tridiagonal matrix inversion, are realized using the MPI paradigm. Results of computational experiments on a multicomputer demonstrate a high efficiency and scalability of the parallel Dichotomy Algorithm. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:423 / 438
页数:16
相关论文
共 50 条
  • [41] Adaptive Relaxation Strategy on Basic Iterative Methods for Solving Linear Systems with Single and Multiple Right-Hand Sides
    Yuan, Yuan
    Sun, Shuli
    Chen, Pu
    Yuan, Mingwu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2021, 13 (02) : 378 - 403
  • [42] Transpose-free Gl-BCG Algorithm for Linear Systems with Multiple Right-hand Sides
    Zhang, Jian-Hua
    Zhao, Jing
    ICIC 2009: SECOND INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTING SCIENCE, VOL 3, PROCEEDINGS, 2009, : 353 - 356
  • [43] Approach to solving the linear systems with multiple right-hand sides in 3-D parasitic inductance extraction
    Yang, Liu
    Guo, Xiao-Bo
    Wang, Ze-Yi
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2004, 32 (11): : 1770 - 1773
  • [44] Block Variants of the COCG and COCR Methods for Solving Complex Symmetric Linear Systems with Multiple Right-Hand Sides
    Gu, Xian-Ming
    Carpentieri, Bruno
    Huang, Ting-Zhu
    Meng, Jing
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 305 - 313
  • [45] Fractional differential equations with worsening right-hand sides
    Barkova, E. A.
    Zabreiko, P. P.
    DIFFERENTIAL EQUATIONS, 2010, 46 (02) : 208 - 213
  • [46] A parallel algorithm for solving a tridiagonal linear system with the ADI method
    Ma, LX
    Harris, FC
    PARALLEL AND DISTRIBUTED COMPUTING SYSTEMS, 2002, : 379 - 385
  • [47] Smoothing iterative block methods for linear systems with multiple right-hand sides
    Jbilou, K
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 107 (01) : 97 - 109
  • [48] DIFFERENTIAL-EQUATIONS WITH DISCONTINUOUS RIGHT-HAND SIDES
    HU, SC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 154 (02) : 377 - 390
  • [49] Method of solving linear stochastic problems with random left and right-hand sides of constraints
    Stolc, Longin
    Advances in Modelling and Analysis A, 1997, 31 (02): : 15 - 28
  • [50] A hybrid approach combining chebyshev filter and conjugate gradient for solving linear systems with multiple right-hand sides
    Golub, Gene H.
    Ruiz, Daniel
    Touhami, Ahmed
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (03) : 774 - 795