Convergence theorems for the H1-integral

被引:6
|
作者
Garces, IJL [1 ]
Lee, PY
机构
[1] Ateneo Manila Univ, Dept Math, Manila, Philippines
[2] Nanyang Technol Univ, Natl Inst Educ, Div Math, Singapore, Singapore
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2000年 / 4卷 / 03期
关键词
Denjoy and Perron integrals; convergence theorem;
D O I
10.11650/twjm/1500407260
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present two convergence theorems for the H-1-integral.
引用
收藏
页码:439 / 445
页数:7
相关论文
共 50 条
  • [41] Theorems of complete convergence and complete integral convergence for END random variables under sub-linear expectations
    Ziwei Liang
    Qunying Wu
    Journal of Inequalities and Applications, 2019
  • [42] A dominated convergence theorem in the K-H integral
    Lu, JT
    Lee, PY
    TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (03): : 507 - 512
  • [43] On convergence theorems for quantiles
    González-Barrios, JM
    Rueda, R
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2001, 30 (05) : 943 - 955
  • [44] 2 CONVERGENCE THEOREMS
    APPLING, WDL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A578 - &
  • [45] Coverings and convergence theorems
    Cazacu, CA
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 169 - 175
  • [46] BOUNDED CONVERGENCE THEOREMS
    Niemiec, Piotr
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (01) : 319 - 357
  • [47] Theorems On The Subsequential Convergence
    Sezer, Sefa Anil
    Canak, Ibrahim
    INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2018), 2019, 2086
  • [48] SURVEY OF CONVERGENCE THEOREMS
    KLESSIG, R
    POLAK, E
    OPERATIONS RESEARCH, 1975, 23 : B264 - B264
  • [49] H-B Theorems of Cauchy Integral Operators in Clifford Analysis
    Wang, Yufeng
    Zhang, Zhongxiang
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2025, 35 (01)
  • [50] Integral pinching theorems
    X. Dai
    P. Petersen
    G. Wei
    manuscripta mathematica, 2000, 101 : 143 - 152