Convergence theorems for the H1-integral

被引:6
|
作者
Garces, IJL [1 ]
Lee, PY
机构
[1] Ateneo Manila Univ, Dept Math, Manila, Philippines
[2] Nanyang Technol Univ, Natl Inst Educ, Div Math, Singapore, Singapore
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2000年 / 4卷 / 03期
关键词
Denjoy and Perron integrals; convergence theorem;
D O I
10.11650/twjm/1500407260
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present two convergence theorems for the H-1-integral.
引用
收藏
页码:439 / 445
页数:7
相关论文
共 50 条
  • [1] Uniform convergence theorem for the H1-integral revisited
    Maliszewski, A
    Sworowski, P
    TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (03): : 503 - 505
  • [2] ON TOTALIZATION OF THE H1-INTEGRAL
    Saric, Branko
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (04): : 1691 - 1700
  • [3] CONVERGENCE THEOREMS FOR THE BIRKHOFF INTEGRAL
    Rodriguez, Jose
    HOUSTON JOURNAL OF MATHEMATICS, 2009, 35 (02): : 541 - 551
  • [4] CONVERGENCE THEOREMS FOR THE BIRKHOFF INTEGRAL
    Balcerzak, Marek
    Potyrala, Monika
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 1207 - 1219
  • [5] Convergence theorems for the Birkhoff integral
    Marek Balcerzak
    Monika Potyrała
    Czechoslovak Mathematical Journal, 2008, 58 : 1207 - 1219
  • [6] Some Convergence Theorems on δ-Denjoy Integral
    Manuharawati
    ADVANCED SCIENCE LETTERS, 2017, 23 (12) : 11991 - 11994
  • [7] Autocontinuity and convergence theorems for the Choquet integral
    Rebille, Yann
    FUZZY SETS AND SYSTEMS, 2012, 194 : 52 - 65
  • [8] Convergence in Measure Theorems of the Choquet Integral Revisited
    Kawabe, Jun
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2019), 2019, 11676 : 17 - 28
  • [9] CONVERGENCE THEOREMS FOR THE CHOQUET-PETTIS INTEGRAL
    Park, Chun-Kee
    KOREAN JOURNAL OF MATHEMATICS, 2014, 22 (02): : 383 - 393
  • [10] Convergence Theorems for the Henstock—Kurzweil—Pettis Integral
    M. Cichon
    Acta Mathematica Hungarica, 2001, 92 : 75 - 82