Nonhomogeneous boundary value problems for the Korteweg-de Vries equation on a bounded domain

被引:20
|
作者
Kramer, Eugene F. [1 ]
Zhang, Bingyu [2 ]
机构
[1] Univ Cincinnati, Raymond Walters Coll, Dept Math Phys & Comp Sci, Cincinnati, OH 45236 USA
[2] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
KdV equation; Korteweg-de Vries equation; well-posed; DEVRIES EQUATION; GENERALIZED KORTEWEG; WELL-POSEDNESS; PERIODIC DOMAIN; KDV; CONTROLLABILITY; STABILIZATION; GENERATION; REGULARITY; INTEGRALS;
D O I
10.1007/s11424-010-0143-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies an initial-boundary-value problem (IBVP) of the Korteweg-de Vries equation posed on a finite interval with general nonhomogeneous boundary conditions. Using the strong Kato smoothing property of the associated linear problem, the IBVP is shown to be locally well-posed in the space H (s) (0, 1) for any s a parts per thousand yen 0 via the contraction mapping principle.
引用
收藏
页码:499 / 526
页数:28
相关论文
共 50 条