A Declarative Framework for Mining Top-k High Utility Itemsets

被引:1
|
作者
Hidouri, Amel [1 ,2 ]
Jabbour, Said [2 ]
Raddaoui, Badran [4 ]
Chebbah, Mouna [3 ]
Ben Yaghlane, Boutheina [1 ]
机构
[1] Univ Tunis, LARODEC, Tunis, Tunisia
[2] Univ Artois, CRIL, CNRS, UMR 8188, Lens, France
[3] Univ Manouba, LARODEC, ESEN, Manouba, Tunisia
[4] Inst Polytech Paris, SAMOVAR, Telecom Sudparis, Paris, France
关键词
Top-k; High utility; Propositional satisfiabilty;
D O I
10.1007/978-3-030-86534-4_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of mining high utility itemsets entails identifying a set of items that yield the highest utility values based on a given user utility threshold. In this paper, we utilize propositional satisfiability to model the Top-k high utility itemset problem as the computation of models of CNF formulas. To achieve our goal, we use a decomposition technique to improve our method's scalability by deriving small and independent sub-problems to capture the Top-k high utility itemsets. Through empirical evaluations, we demonstrate that our approach is competitive to the state-of-the-art specialized algorithms.
引用
收藏
页码:250 / 256
页数:7
相关论文
共 50 条
  • [41] Mining top-k high utility patterns over data streams
    Zihayat, Morteza
    An, Aijun
    INFORMATION SCIENCES, 2014, 285 : 138 - 161
  • [42] Efficient top-k high utility itemset mining on massive data
    Han, Xixian
    Liu, Xianmin
    Li, Jianzhong
    Gao, Hong
    INFORMATION SCIENCES, 2021, 557 : 382 - 406
  • [43] Real Time Utility-Based Recommendation for Revenue Optimization via An Adaptive Online Top-K High Utility Itemsets Mining Model
    Yang, Ruixin
    Xu, Mingyang
    Jones, Paul
    Samatova, Nagiza
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,
  • [44] ETKDS: An efficient algorithm of Top-K high utility itemsets mining over data streams under sliding window model
    Cheng, Haodong
    Han, Meng
    Zhang, Ni
    Wang, Le
    Li, Xiaojuan
    Journal of Intelligent and Fuzzy Systems, 2021, 41 (02): : 3317 - 3338
  • [45] ETKDS: An efficient algorithm of Top-K high utility itemsets mining over data streams under sliding window model
    Cheng, Haodong
    Han, Meng
    Zhang, Ni
    Wang, Le
    Li, Xiaojuan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (02) : 3317 - 3338
  • [46] TFP: An efficient algorithm for mining top-K frequent closed itemsets
    Wang, JY
    Han, JW
    Lu, Y
    Tzvetkov, P
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (05) : 652 - 664
  • [47] Top-k High Utility Itemset Mining Based on Utility-List Structures
    Lee, Serin
    Park, Jong Soo
    2016 INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2016, : 101 - 108
  • [48] TKN: An efficient approach for discovering top-k high utility itemsets with positive or negative profits
    Ashraf, Mohamed
    Abdelkader, Tamer
    Rady, Sherine
    Gharib, Tarek F.
    INFORMATION SCIENCES, 2022, 587 : 654 - 678
  • [49] Discovering Top-k Spatial High Utility Itemsets in Very Large Quantitative Spatiotemporal databases
    Pallikila, Pradeep
    Veena, P.
    Kiran, R. Uday
    Avatar, Ram
    Ito, Sadanori
    Zettsu, Koji
    Reddy, P. Krishna
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 4925 - 4935
  • [50] TopUMS: Top-k Utility Mining in Stream Data
    Song, Wei
    Fang, Caiyu
    Gan, Wensheng
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 615 - 622