Insight into the experimental and modeling study of process intensification for post-combustion CO2 capture by rotating packed bed

被引:24
|
作者
Zarei, Fariba [1 ]
Rahimi, Mahmood Reza [2 ]
Razavi, Razieh [3 ]
Baghban, Alireza [4 ]
机构
[1] Shiraz Univ, Dept Chem Engn, Shiraz, Iran
[2] Univ Yasuj, Chem Engn Dept, Proc Intensificat Lab, Yasuj 7591874831, Iran
[3] Univ Jiroft, Fac Sci, Dept Chem, Jiroft, Iran
[4] Amirkabir Univ Technol, Dept Chem Engn, Mahshahr Campus, Mahshahr, Iran
关键词
Process intensification; Rotating packed bed; CO2-liquid system; Mass transfer; Artificial neural network; EFFECTIVE INTERFACIAL AREA; MASS-TRANSFER; GAS-LIQUID; CETANE NUMBER; ABSORPTION;
D O I
10.1016/j.jclepro.2018.11.239
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The purpose of rotating packed bed is to intensify process conditions by using centrifugal forces. The effective interfacial area is a critical design factor and has a direct relationship with operational condition and mass transfer rate. Process intensification by the rotating packed bed is an emerging technology to improve the mass transfer rate in a high gravity system. Since there are limited modeling studies in order to control rotating packed bed parameters, in the present study, the multilayer perceptron artificial neural network (MLP) framework was successfully used to investigate the gas-liquid effective interfacial area in a rotating packed bed. In this regard, a number of 265 experimental data for the gas-liquid effective interfacial area was utilized by considering three groups including operational factors, physical dimension, and gas-liquid properties as the network' inputs. The mean relative error and R-square as analogy factors for verification of the model accuracy obtained to be 8.2% and 0.97, respectively. Accordingly, the present model can be a huge value in the CO2-liquid system and it is introduced as a novel strategy to determine the gas-liquid effective interfacial area in a rotating packed bed. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:953 / 961
页数:9
相关论文
共 50 条
  • [41] Post-Combustion CO2 capture using supported amine sorbents: A process integration study
    Veneman, R.
    Kamphuis, H.
    Brilman, D. W. F.
    GHGT-11, 2013, 37 : 2100 - 2108
  • [42] A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations
    Xue B.
    Yu Y.
    Chen J.
    Luo X.
    Wang M.
    International Journal of Coal Science & Technology, 2017, 4 (1) : 15 - 24
  • [43] Experimental Study of the Dynamic Behavior of the Stripping Column for Post-combustion CO2 Capture with Monoethanolamine
    Li, Xiaofei
    Wang, Shujuan
    Chen, Changhe
    ENERGY & FUELS, 2014, 28 (02) : 1230 - 1241
  • [44] Post-combustion CO2 capture in a CI engine using adsorbent - a numerical and experimental study
    Rathore, Sushil Kumar
    Maduwantha, Bamunusinghe Arachchige Umesh
    Maniarasu, Ravi
    Murugan, Sivalingam
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2024, 33 (03) : 264 - 283
  • [45] Experimental study on hybrid MS-CA system for post-combustion CO2 capture
    Jiang, Yanchi
    Zhang, Zhongxiao
    Fan, Haojie
    Fan, Junjie
    An, Haiquan
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2018, 8 (02): : 379 - 392
  • [46] Experimental approach to mimic and study degradation of solvents used for post-combustion CO2 capture
    Bontemps, D.
    Cuccia, L.
    Awad, P.
    Louis-Louisy, M.
    Vial, J.
    Dugay, J.
    Carrette, P. L.
    Huard, T.
    Morand, T.
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 1709 - 1715
  • [47] Modelling reactive absorption of CO2 in packed columns for post-combustion carbon capture applications
    Khan, F. M.
    Krishnamoorthi, V.
    Mahmud, T.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2011, 89 (09): : 1600 - 1608
  • [48] Conceptual Design of Post-Combustion CO2 Capture Processes - Packed Columns and Membrane Technologies
    Leimbrink, Mathias
    Kunze, Anna-Katharina
    Hellmann, David
    Gorak, Andrzej
    Skiborowski, Mirko
    12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING (PSE) AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT B, 2015, 37 : 1223 - 1228
  • [49] Modelling and Experimental Study of the CO2 Adsorption Behaviour of Polyaspartamide as an Adsorbent during Post-Combustion CO2 Capture
    Yoro, Kelvin O.
    Singo, Muofhe
    Mulopo, Jean L.
    Daramola, Michael O.
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 1643 - 1664
  • [50] Intensification of CO2 capture by monoethanolamine solution containing TiO2 nanoparticles in a rotating packed bed
    Dashti, Masoud Shirzadi Ahou
    Abolhasani, Mahdieh
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2020, 94