On the complexity of the hidden subgroup problem

被引:0
|
作者
Fenner, Stephen [1 ]
Zhang, Yong [2 ]
机构
[1] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA
[2] Eastern Mennonite Univ, Dept Math Sci, Harrisonburg 22802, VA USA
关键词
QUANTUM COMPUTATION; ALGORITHMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that several problems that figure prominently in quantum computing, including HIDDEN COSET, HIDDEN SHIFT, and ORBIT COSET, are equivalent or reducible to HIDDEN SUBGROUP. We also show that, over permutation groups, the decision version and search version of HIDDEN SUBGROUP are polynomial-time equivalent. For HIDDEN SUBGROUP over dihedral groups, such an equivalence can be obtained if the order of the group is smooth. Finally, we give nonadaptive program checkers for HIDDEN SUBGROUP and its decision version.
引用
收藏
页码:70 / +
页数:3
相关论文
共 50 条
  • [41] An Efficient Quantum Algorithm for the Hidden Subgroup Problem in Nil-2 Groups
    Ivanyos, Gabor
    Sanselme, Luc
    Santha, Miklos
    ALGORITHMICA, 2012, 62 (1-2) : 480 - 498
  • [42] HIDDEN SYMMETRY SUBGROUP PROBLEMS
    Decker, Thomas
    Ivanyos, Gabor
    Santha, Miklos
    Wocjan, Pawel
    SIAM JOURNAL ON COMPUTING, 2013, 42 (05) : 1987 - 2007
  • [43] A quantum algorithm for the dihedral hidden subgroup problem based on lattice basis reduction algorithm
    Li, Fada
    Bao, Wansu
    Fu, Xiangqun
    CHINESE SCIENCE BULLETIN, 2014, 59 (21): : 2552 - 2557
  • [44] An Efficient Quantum Algorithm for the Hidden Subgroup Problem over Weyl-Heisenberg Groups
    Krovi, Hari
    Roetteler, Martin
    MATHEMATICAL METHODS IN COMPUTER SCIENCE: ESSAYS IN MEMORY OF THOMAS BETH, 2008, 5393 : 70 - 88
  • [45] How a clebsch-gordan transform helps to solve the Heisenberg hidden subgroup problem
    Bacon, D.
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (05) : 438 - 467
  • [46] Efficient quantum algorithms for the hidden subgroup problem over semi-direct product groups
    Inui, Yoshifumi
    Le Gall, Francois
    QUANTUM INFORMATION & COMPUTATION, 2007, 7 (5-6) : 559 - 570
  • [47] Continuous quantum hidden subgroup algorithms
    Lomonaco, SJ
    Kauffman, LH
    QUANTUM INFORMATION AND COMPUTATION, 2003, 5105 : 80 - 88
  • [48] On the subgroup distance problem
    Buchheim, Christoph
    Cameron, Peter J.
    Wu, Taoyang
    DISCRETE MATHEMATICS, 2009, 309 (04) : 962 - 968
  • [49] From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups
    Bacon, D
    Childs, AM
    van Dam, W
    46TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2005, : 469 - 478
  • [50] DIMENSION SUBGROUP PROBLEM
    SANDLING, R
    JOURNAL OF ALGEBRA, 1972, 21 (02) : 216 - &