Mortality predictors in patients with COVID-19 pneumonia: a machine learning approach using eXtreme Gradient Boosting model

被引:7
|
作者
Casillas, N. [1 ,2 ]
Torres, A. M. [2 ]
Moret, M. [1 ]
Gomez, A. [1 ]
Rius-Peris, J. M. [2 ,3 ]
Mateo, J. [2 ]
机构
[1] Hosp Virgen de La Luz, Dept Internal Med, Cuenca, Spain
[2] Castilla La Mancha Univ, Inst Technol, Neurobiol Res Grp, Cuenca, Spain
[3] Hosp Virgen de La Luz, Dept Pediat, Cuenca, Spain
关键词
Artificial intelligence; Machine learning; XGB; Prediction; Mortality; COVID-19; SARS-CoV-2; SARS-COV-2; PNEUMONIA; DIAGNOSIS;
D O I
10.1007/s11739-022-03033-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recently, global health has seen an increase in demand for assistance as a result of the COVID-19 pandemic. This has prompted many researchers to conduct different studies looking for variables that are associated with increased clinical risk, and find effective and safe treatments. Many of these studies have been limited by presenting small samples and a large data set. Using machine learning (ML) techniques we can detect parameters that help us to improve clinical diagnosis, since they are a system for the detection, prediction and treatment of complex data. ML techniques can be valuable for the study of COVID-19, especially because they can uncover complex patterns in large data sets. This retrospective study of 150 hospitalized adult COVID-19 patients, of which we established two groups, those who died were called Case group (n = 53) while the survivors were Control group (n = 98). For analysis, a supervised learning algorithm eXtreme Gradient Boosting (XGBoost) has been used due to its good response compared to other methods because it is highly efficient, flexible and portable. In this study, the response to different treatments has been evaluated and has made it possible to accurately predict which patients have higher mortality using artificial intelligence, obtaining better results compared to other ML methods.
引用
收藏
页码:1929 / 1939
页数:11
相关论文
共 50 条
  • [41] THE MOST INFORMATIVE BIOMARKERS AS PREDICTORS OF MORTALITY IN COVID-19 PNEUMONIA
    Huba, Y.
    Bielosludtseva, K.
    Konopkina, L.
    EUROPEAN RESPIRATORY JOURNAL, 2022, 60
  • [42] Using Machine Learning to Predict Mortality for COVID-19 Patients on Day 0 in the ICU
    Jamshidi, Elham
    Asgary, Amirhossein
    Tavakoli, Nader
    Zali, Alireza
    Setareh, Soroush
    Esmaily, Hadi
    Jamaldini, Seyed Hamid
    Daaee, Amir
    Babajani, Amirhesam
    Kashi, Mohammad Ali Sendani
    Jamshidi, Masoud
    Rahi, Sahand Jamal
    Mansouri, Nahal
    FRONTIERS IN DIGITAL HEALTH, 2022, 3
  • [43] Predicting in-Hospital Mortality of Patients with COVID-19 Using Machine Learning Techniques
    Tezza, Fabiana
    Lorenzoni, Giulia
    Azzolina, Danila
    Barbar, Sofia
    Leone, Lucia Anna Carmela
    Gregori, Dario
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (05):
  • [44] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    van de Leur, R. R.
    Bleijendaal, H.
    Taha, K.
    Mast, T.
    Gho, J. M. I. H.
    Linschoten, M.
    van Rees, B.
    Henkens, M. T. H. M.
    Heymans, S.
    Sturkenboom, N.
    Tio, R. A.
    Offerhaus, J. A.
    Bor, W. L.
    Maarse, M.
    Haerkens-Arends, H. E.
    Kolk, M. Z. H.
    van der Lingen, A. C. J.
    Selder, J. J.
    Wierda, E. E.
    van Bergen, P. F. M. M.
    Winter, M. M.
    Zwinderman, A. H.
    Doevendans, P. A.
    van der Harst, P.
    Pinto, Y. M.
    Asselbergs, F. W.
    van Es, R.
    Tjong, F. V. Y.
    NETHERLANDS HEART JOURNAL, 2022, 30 (06) : 312 - 318
  • [45] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    R. R. van de Leur
    H. Bleijendaal
    K. Taha
    T. Mast
    J. M. I. H. Gho
    M. Linschoten
    B. van Rees
    M. T. H. M. Henkens
    S. Heymans
    N. Sturkenboom
    R. A. Tio
    J. A. Offerhaus
    W. L. Bor
    M. Maarse
    H. E. Haerkens-Arends
    M. Z. H. Kolk
    A. C. J. van der Lingen
    J. J. Selder
    E. E. Wierda
    P. F. M. M. van Bergen
    M. M. Winter
    A. H. Zwinderman
    P. A. Doevendans
    P. van der Harst
    Y. M. Pinto
    F. W. Asselbergs
    R. van Es
    F. V. Y. Tjong
    Netherlands Heart Journal, 2022, 30 : 312 - 318
  • [46] Using Machine Learning to Predict Hospitalization and Mortality of COVID-19 Patients with Diabetic Retinopathy
    Zhong, Katherine
    Chen, Elizabeth
    Eickhoff, Carsten
    Greenberg, Paul
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [47] An individualized algorithm to predict mortality in COVID-19 pneumonia: a machine learning based study
    Laino, Maria Elena
    Generali, Elena
    Tommasini, Tobia
    Angelotti, Giovanni
    Aghemo, Alessio
    Desai, Antonio
    Morandini, Pierandrea
    Stefanini, Giulio
    Lleo, Ana
    Voza, Antonio
    Savevski, Victor
    ARCHIVES OF MEDICAL SCIENCE, 2022, 18 (03) : 587 - 595
  • [48] Predictors of severity and mortality in COVID-19 patients
    Assal, Hebatallah Hany
    Abdel-hamid, Hoda M.
    Magdy, Sally
    Salah, Maged
    Ali, Asmaa
    Elkaffas, Rasha Helmy
    Sabry, Irene Mohamed
    EGYPTIAN JOURNAL OF BRONCHOLOGY, 2022, 16 (01)
  • [49] Predictors of severity and mortality in COVID-19 patients
    Hebatallah Hany Assal
    Hoda M. Abdel-hamid
    Sally Magdy
    Maged Salah
    Asmaa Ali
    Rasha Helmy Elkaffas
    Irene Mohamed Sabry
    The Egyptian Journal of Bronchology, 2022, 16
  • [50] PREDICTORS OF MORTALITY IN HOSPITALIZED COVID-19 PATIENTS
    Khadzhieva, Maryam
    Gracheva, Alesya
    Yadgarov, Mikhail
    Pisarev, Mikhail
    Ershov, Anton
    Grebenchikov, Oleg
    Shabanov, Aslan
    Tutelyan, Alexey
    Kuzovlev, Artem
    ARCHIV EUROMEDICA, 2022, 12 (04):