Mortality predictors in patients with COVID-19 pneumonia: a machine learning approach using eXtreme Gradient Boosting model

被引:7
|
作者
Casillas, N. [1 ,2 ]
Torres, A. M. [2 ]
Moret, M. [1 ]
Gomez, A. [1 ]
Rius-Peris, J. M. [2 ,3 ]
Mateo, J. [2 ]
机构
[1] Hosp Virgen de La Luz, Dept Internal Med, Cuenca, Spain
[2] Castilla La Mancha Univ, Inst Technol, Neurobiol Res Grp, Cuenca, Spain
[3] Hosp Virgen de La Luz, Dept Pediat, Cuenca, Spain
关键词
Artificial intelligence; Machine learning; XGB; Prediction; Mortality; COVID-19; SARS-CoV-2; SARS-COV-2; PNEUMONIA; DIAGNOSIS;
D O I
10.1007/s11739-022-03033-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recently, global health has seen an increase in demand for assistance as a result of the COVID-19 pandemic. This has prompted many researchers to conduct different studies looking for variables that are associated with increased clinical risk, and find effective and safe treatments. Many of these studies have been limited by presenting small samples and a large data set. Using machine learning (ML) techniques we can detect parameters that help us to improve clinical diagnosis, since they are a system for the detection, prediction and treatment of complex data. ML techniques can be valuable for the study of COVID-19, especially because they can uncover complex patterns in large data sets. This retrospective study of 150 hospitalized adult COVID-19 patients, of which we established two groups, those who died were called Case group (n = 53) while the survivors were Control group (n = 98). For analysis, a supervised learning algorithm eXtreme Gradient Boosting (XGBoost) has been used due to its good response compared to other methods because it is highly efficient, flexible and portable. In this study, the response to different treatments has been evaluated and has made it possible to accurately predict which patients have higher mortality using artificial intelligence, obtaining better results compared to other ML methods.
引用
收藏
页码:1929 / 1939
页数:11
相关论文
共 50 条
  • [1] Mortality predictors in patients with COVID-19 pneumonia: a machine learning approach using eXtreme Gradient Boosting model
    N. Casillas
    A. M. Torres
    M. Moret
    A. Gómez
    J. M. Rius-Peris
    J. Mateo
    Internal and Emergency Medicine, 2022, 17 : 1929 - 1939
  • [2] Identifying Predictors of COVID-19 Mortality Using Machine Learning
    Wan, Tsz-Kin
    Huang, Rui-Xuan
    Tulu, Thomas Wetere
    Liu, Jun-Dong
    Vodencarevic, Asmir
    Wong, Chi-Wah
    Chan, Kei-Hang Katie
    LIFE-BASEL, 2022, 12 (04):
  • [3] Predictors for extubation failure in COVID-19 patients using a machine learning approach
    Lucas M. Fleuren
    Tariq A. Dam
    Michele Tonutti
    Daan P. de Bruin
    Robbert C. A. Lalisang
    Diederik Gommers
    Olaf L. Cremer
    Rob J. Bosman
    Sander Rigter
    Evert-Jan Wils
    Tim Frenzel
    Dave A. Dongelmans
    Remko de Jong
    Marco Peters
    Marlijn J. A. Kamps
    Dharmanand Ramnarain
    Ralph Nowitzky
    Fleur G. C. A. Nooteboom
    Wouter de Ruijter
    Louise C. Urlings-Strop
    Ellen G. M. Smit
    D. Jannet Mehagnoul-Schipper
    Tom Dormans
    Cornelis P. C. de Jager
    Stefaan H. A. Hendriks
    Sefanja Achterberg
    Evelien Oostdijk
    Auke C. Reidinga
    Barbara Festen-Spanjer
    Gert B. Brunnekreef
    Alexander D. Cornet
    Walter van den Tempel
    Age D. Boelens
    Peter Koetsier
    Judith Lens
    Harald J. Faber
    A. Karakus
    Robert Entjes
    Paul de Jong
    Thijs C. D. Rettig
    Sesmu Arbous
    Sebastiaan J. J. Vonk
    Mattia Fornasa
    Tomas Machado
    Taco Houwert
    Hidde Hovenkamp
    Roberto Noorduijn Londono
    Davide Quintarelli
    Martijn G. Scholtemeijer
    Aletta A. de Beer
    Critical Care, 25
  • [4] Predictors for extubation failure in COVID-19 patients using a machine learning approach
    Fleuren, Lucas M.
    Dam, Tariq A.
    Tonutti, Michele
    de Bruin, Daan P.
    Lalisang, Robbert C. A.
    Gommers, Diederik
    Cremer, Olaf L.
    Bosman, Rob J.
    Rigter, Sander
    Wils, Evert-Jan
    Frenzel, Tim
    Dongelmans, Dave A.
    de Jong, Remko
    Peters, Marco
    Kamps, Marlijn J. A.
    Ramnarain, Dharmanand
    Nowitzky, Ralph
    Nooteboom, Fleur G. C. A.
    de Ruijter, Wouter
    Urlings-Strop, Louise C.
    Smit, Ellen G. M.
    Mehagnoul-Schipper, D. Jannet
    Dormans, Tom
    de Jager, Cornelis P. C.
    Hendriks, Stefaan H. A.
    Achterberg, Sefanja
    Oostdijk, Evelien
    Reidinga, Auke C.
    Festen-Spanjer, Barbara
    Brunnekreef, Gert B.
    Cornet, Alexander D.
    van den Tempel, Walter
    Boelens, Age D.
    Koetsier, Peter
    Lens, Judith
    Faber, Harald J.
    Karakus, A.
    Entjes, Robert
    de Jong, Paul
    Rettig, Thijs C. D.
    Arbous, Sesmu
    Vonk, Sebastiaan J. J.
    Fornasa, Mattia
    Machado, Tomas
    Houwert, Taco
    Hovenkamp, Hidde
    Londono, Roberto Noorduijn
    Quintarelli, Davide
    Scholtemeijer, Martijn G.
    de Beer, Aletta A.
    CRITICAL CARE, 2021, 25 (01)
  • [5] A gradient boosting-based mortality prediction model for COVID-19 patients
    Keser, Sinem Bozkurt
    Keskin, Kemal
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (33): : 23997 - 24013
  • [6] Predicting the mortality of patients with Covid-19: A machine learning approach
    Emami, Hassan
    Rabiei, Reza
    Sohrabei, Solmaz
    Atashi, Alireza
    HEALTH SCIENCE REPORTS, 2023, 6 (04)
  • [7] A data-driven eXtreme gradient boosting machine learning model to predict COVID-19 transmission with meteorological drivers
    Rahman, Md Siddikur
    Chowdhury, Arman Hossain
    PLOS ONE, 2022, 17 (09):
  • [9] Outcome Predictors of COVID-19 Patients on ICUs by using machine Learning
    Ruchalla, Elke
    ANASTHESIOLOGIE INTENSIVMEDIZIN NOTFALLMEDIZIN SCHMERZTHERAPIE, 2022, 57 (04):
  • [10] Unsupervised machine learning clustering approach for hospitalized COVID-19 pneumonia patients
    Nalinthasnai, Nuttinan
    Thammasudjarit, Ratchainant
    Tassaneyasin, Tanapat
    Eksombatchai, Dararat
    Sungkanuparph, Somnuek
    Boonsarngsuk, Viboon
    Sutherasan, Yuda
    Junhasavasdikul, Detajin
    Theerawit, Pongdhep
    Petnak, Tananchai
    BMC PULMONARY MEDICINE, 2025, 25 (01):