Machine Learning Methods for Multiscale Physics and Urban Engineering Problems

被引:0
|
作者
Sharma, Somya [1 ]
Thompson, Marten [2 ]
Laefer, Debra [3 ]
Lawler, Michael [4 ]
McIlhany, Kevin [5 ]
Pauluis, Olivier [6 ]
Trinkle, Dallas R. [7 ]
Chatterjee, Snigdhansu [2 ]
机构
[1] Univ Minnesota Twin Cities, Dept Comp Sci & Engn, 200 Union St SE, Minneapolis, MN 55455 USA
[2] Univ Minnesota Twin Cities, Sch Stat, 313 Ford Hall,224 Church St SE, Minneapolis, MN 55455 USA
[3] New York Univ, Dept Civil & Urban Engn, Rogers Hall RH 411, Brooklyn, NY 11201 USA
[4] Binghamton Univ, Dept Phys Appl Phys & Astron, 4400 Vestal Pkwy East, Binghamton, NY 13902 USA
[5] US Naval Acad, Dept Phys, 572 Holloway Rd m s 9c, Annapolis, MD 21402 USA
[6] New York Univ, Courant Inst Math Sci, 251Mercer St, New York, NY 10012 USA
[7] Univ Illinois, Dept Mat Sci & Engn, 201 Mat Sci & Engn Bldg,1304 W Green St MC 246, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
spin ice; approximate Hamiltonian; molecular dynamics; moist atmosphere dynamics; urban engineering; hybrid approach; time evolution; dimension reduction; multi-resolution Gaussian Process; approximate Bayesian computation; EMBEDDED-ATOM METHOD; DYNAMIC-MODE DECOMPOSITION; EQUATION-OF-STATE; INTERATOMIC POTENTIALS; GAUSSIAN-PROCESSES; NEURAL-NETWORKS; MONTE-CARLO; SYSTEMS; LIDAR; OPTIMIZATION;
D O I
10.3390/e24081134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an overview of four challenging research areas in multiscale physics and engineering as well as four data science topics that may be developed for addressing these challenges. We focus on multiscale spatiotemporal problems in light of the importance of understanding the accompanying scientific processes and engineering ideas, where "multiscale" refers to concurrent, non-trivial and coupled models over scales separated by orders of magnitude in either space, time, energy, momenta, or any other relevant parameter. Specifically, we consider problems where the data may be obtained at various resolutions; analyzing such data and constructing coupled models led to open research questions in various applications of data science. Numeric studies are reported for one of the data science techniques discussed here for illustration, namely, on approximate Bayesian computations.
引用
收藏
页数:45
相关论文
共 50 条
  • [21] Forecasting Inflection Points: Hybrid Methods with Multiscale Machine Learning Algorithms
    Julien Chevallier
    Bangzhu Zhu
    Lyuyuan Zhang
    Computational Economics, 2021, 57 : 537 - 575
  • [22] A machine learning approach for efficient uncertainty quantification using multiscale methods
    Chan, Shing
    Elsheikh, Ahmed H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 354 : 493 - 511
  • [23] Benchmarking of Machine Learning Methods for Multiscale Thermal Simulation of Integrated Circuits
    Coenen, David
    Oprins, Herman
    Degraeve, Robin
    Wolf, Ingrid De
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (07) : 2264 - 2275
  • [24] Forecasting Inflection Points: Hybrid Methods with Multiscale Machine Learning Algorithms
    Chevallier, Julien
    Zhu, Bangzhu
    Zhang, Lyuyuan
    COMPUTATIONAL ECONOMICS, 2021, 57 (02) : 537 - 575
  • [26] Survey of Machine Learning Methods Applied to Urban Mobility
    Ahmed, Dina Bousdar
    Diaz, Estefania Munoz
    IEEE ACCESS, 2022, 10 : 30349 - 30366
  • [27] Machine learning of evolving physics-based material models for multiscale solid mechanics
    Rocha, I. B. C. M.
    Kerfriden, P.
    van der Meer, F. P.
    MECHANICS OF MATERIALS, 2023, 184
  • [28] MULTISCALE METHODS FOR ELLIPTIC PROBLEMS
    Malqvist, Axel
    MULTISCALE MODELING & SIMULATION, 2011, 9 (03): : 1064 - 1086
  • [29] Applications of machine learning: matching problems to tasks and methods
    Van Someren, Maarten
    Urbancic, Tanja
    KNOWLEDGE ENGINEERING REVIEW, 2005, 20 (04): : 363 - 402
  • [30] A Survey on Automated Machine Learning: Problems, Methods and Frameworks
    Kim, Dohyung
    Koo, Jahwan
    Kim, Ung-Mo
    HUMAN-COMPUTER INTERACTION: THEORETICAL APPROACHES AND DESIGN METHODS, PT I, 2022, 13302 : 57 - 70