Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations

被引:149
|
作者
Yousefi, S
Razzaghi, M [2 ]
机构
[1] Mazandaran Univ, Dept Math, Babol Sar, Iran
[2] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[3] Amirkabir Univ Technol, Dept Appl Math, Tehran, Iran
关键词
Legendre; wavelets; nonlinear; Volterra-Fredholm; integral equations;
D O I
10.1016/j.matcom.2005.02.035
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A numerical method for solving the nonlinear Volterra-Fredholm integral equations is presented. The method is based upon Legendre wavelet approximations. The properties of Legendre wavelet are first presented. These properties together with the Gaussian integration method are then utilized to reduce the Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [41] INTRODUCING A NEW APPROACH TO SOLVE NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS
    Tofigh, A. A. Cheraghi
    Ezzati, R.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 10 (02): : 175 - 187
  • [42] ON MIXED NONLINEAR INTEGRAL EQUATIONS OF VOLTERRA-FREDHOLM TYPE WITH MODIFIED ARGUMENT
    Bacotiu, Claudia
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2009, 54 (01): : 29 - 41
  • [43] An Algorithm for the Solution of Nonlinear Volterra-Fredholm Integral Equations with a Singular Kernel
    Abusalim, Sahar M.
    Abdou, Mohamed A.
    Nasr, Mohamed E.
    Abdel-Aty, Mohamed A.
    FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [44] A spectral collocation method with piecewise trigonometric basis functions for nonlinear Volterra-Fredholm integral equations
    Amiri, Sadegh
    Hajipour, Mojtaba
    Baleanu, Dumitru
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 370
  • [45] On the approximate solution of nonlinear Volterra-Fredholm integral equations on a complex domain by Dzyadyk’s method
    M. M. Rizk
    S. L. Zaher
    Ukrainian Mathematical Journal, 1997, 49 (11) : 1705 - 1717
  • [46] Approximate solution of nonlinear mixed Volterra-Fredholm fuzzy integral equations using the Adomian method
    Naydenova, Iva
    Georgieva, Atanaska
    PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2019, 2172
  • [47] On the Solutions of the Second Kind Nonlinear Volterra-Fredholm Integral Equations via Homotopy Analysis Method
    Rahby, A. S.
    Abdou, M. A.
    Mosa, G. A.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [48] Least squares approximation method for the solution of Volterra-Fredholm integral equations
    Wang, Qisheng
    Wang, Keyan
    Chen, Shaojun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 272 : 141 - 147
  • [49] Solution of system of the mixed Volterra-Fredholm integral equations by an analytical method
    Ghasemi, M.
    Fardi, M.
    Ghaziani, R. Khoshsiar
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 58 (7-8) : 1522 - 1530
  • [50] Application of Fibonacci collocation method for solving Volterra-Fredholm integral equations
    Mirzaee, Farshid
    Hoseini, Seyede Fatemeh
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 637 - 644