Spectral-Spatial Classification of Hyperspectral Images via Spatial Translation-Invariant Wavelet-Based Sparse Representation

被引:39
|
作者
He, Lin [1 ]
Li, Yuanqing [1 ]
Li, Xiaoxin [2 ,3 ]
Wu, Wei [1 ]
机构
[1] S China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Ctr Comp Vis, Guangzhou 510275, Guangdong, Peoples R China
[3] Zhejiang Univ Technol, Fac Informat Technol, Coll Comp Sci & Technol, Hangzhou 310023, Zhejiang, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI); sparse representation; sparsity recoverability; spatial translation-invariant wavelet (STIW); spectral-spatial classification; VECTOR; FUSION;
D O I
10.1109/TGRS.2014.2363682
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
For hyperspectral image (HSI) classification, it is challenging to adopt the methodology of sparse-representation-based classification. In this paper, we first propose an l(1)-minimization-based spectral-spatial classification method for HSIs via a spatial translation-invariant wavelet (STIW)-based sparse representation (STIW-SR), wherein both the spectrum dictionary and the analyzed signal are formed with STIW features. Due to the capability of a STIW to reduce both the observation noise and the spatial nonstationarity while maintaining the ideal spectra, which is proved with our signal-interference-noise spectrum model involved, it is expected that the pixels in the same class congregate in a lower dimensional subspace, and the separations among class-specific subspaces are enhanced, thus yielding a highly discriminative sparse representation. Then, we develop an approach to evaluate the sparsity recoverability of an l(1)-minimization on HSIs in a probabilistic framework. This approach takes into account not only the recovery probability under the given support length of the l(0)-norm solution but also the a priori probability of the support length; consequently, it overcomes the inability of traditional mutual/cumulative coherence conditions to address high-coherence HSIs. This paper reveals that the higher sparsity recoverability of a STIW-SR leads to its higher classification accuracy and that the increasing coherence does not necessarily lead to a reduced sparsity recovery probability, and this paper verifies the connection between l(0) and l(1)-minimizations on HSIs. Experimental results from real-world HSIs suggest that our classification method significantly outperforms several representative spectral-spatial classifiers and support vector machines.
引用
收藏
页码:2696 / 2712
页数:17
相关论文
共 50 条
  • [21] A Probabilistic Framework for Spectral-Spatial Classification of Hyperspectral Images
    Liu, Jinlin
    Lu, Wenkai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (09): : 5375 - 5384
  • [22] A New Methodology for Spectral-Spatial Classification of Hyperspectral Images
    Miao, Zelang
    Shi, Wenzhong
    JOURNAL OF SENSORS, 2016, 2016
  • [23] Spectral-Spatial Adaptive Sparse Representation for Hyperspectral Image Denoising
    Lu, Ting
    Li, Shutao
    Fang, Leyuan
    Ma, Yi
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01): : 373 - 385
  • [24] NON- LOCAL SPECTRAL-SPATIAL CENTRALIZED SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Soomro, Bushra Naz
    Xiao, Liang
    Soomro, Shahzad Hyder
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 509 - 512
  • [25] Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images
    Al-khafaji, Suhad Lateef
    Zhou, Jun
    Zia, Ali
    Liew, Alan Wee-Chung
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (02) : 837 - 850
  • [26] Hyperspectral anomaly detection based on spectral-spatial background joint sparse representation
    Zhang, Lili
    Zhao, Chunhui
    EUROPEAN JOURNAL OF REMOTE SENSING, 2017, 50 (01) : 362 - 376
  • [27] Spectral-Spatial Attention Rotation-Invariant Classification Network for Airborne Hyperspectral Images
    Shi, Yuetian
    Fu, Bin
    Wang, Nan
    Cheng, Yinzhu
    Fang, Jie
    Liu, Xuebin
    Zhang, Geng
    DRONES, 2023, 7 (04)
  • [28] Spectral-Spatial Hyperspectral Classification via Structural-Kernel Collaborative Representation
    Tu, Bing
    Zhou, Chengle
    Liao, Xiaolong
    Zhang, Guoyun
    Peng, Yishu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 861 - 865
  • [29] Spectral-spatial classification of hyperspectral images using trilateral filter and stacked sparse autoencoder
    Zhao, Chunhui
    Wan, Xiaoqing
    Zhao, Genping
    Yan, Yiming
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [30] WaveFormer: Spectral-Spatial Wavelet Transformer for Hyperspectral Image Classification
    Ahmad, Muhammad
    Ghous, Usman
    Usama, Muhammad
    Mazzara, Manuel
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5