Software framework for visualizing space-variant image filters

被引:0
|
作者
Moore, KW
Tsui, K
机构
来源
关键词
space-variant filtering; visualization; interactive filtering; band-pass filtering; seismic data filtering; median filter; warping;
D O I
10.1117/12.270317
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We have developed a software framework that simplifies the task of implementing, controlling, and visualizing space-variant image filters. A filter's behaviour over an image is dictated by the parameters that control it. The values of each parameter can be data, geometric, algorithmic, or user dependent. We call this the parameter's source-dependence. Parameters can also vary over any number of image dimensions (a spatially-invariant parameter has dimensionality of 0). We call this the parameter's dimensionality-dependence. Using the parameter dependence classification scheme as a base, the software framework provides tools that allow visualization of filter properties, and where appropriate, interactive user control. A median filter is a simple example of a data dependent (adaptive) filter. We make explicit the components of data analysis and filtering, and use it to show how filter properties can be visualized. A space-variant band-pass filter, used in seismic data processing, shows how user interaction can be incorporated into the framework. Finally, a simple geometric warp shows how geometric (and algorithmic) dependent filters benefit.
引用
收藏
页码:245 / 256
页数:4
相关论文
共 50 条
  • [31] SPACE-VARIANT SYSTEM-ANALYSIS OF IMAGE MOTION
    SAWCHUK, AA
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1973, 63 (09) : 1052 - 1063
  • [32] Identification of model parameters and correcting filters for space-variant distortions.
    Sergeyev, VV
    Fursov, VA
    Maksimov, MV
    COMPUTER AND HOLOGRAPHIC OPTICS AND IMAGE PROCESSING, 1998, 3348 : 275 - 282
  • [33] Representation is space-variant
    Bonmassar, G
    Schwartz, EL
    BEHAVIORAL AND BRAIN SCIENCES, 1998, 21 (04) : 469 - +
  • [34] Space-variant model fitting and selection for image information extraction
    Soccorsi, Matteo
    Quartulli, Marco
    Datcu, Mihai
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2006, 872 : 358 - +
  • [35] Response properties of a foveated space-variant CMOS image sensor
    Pardo, F
    Boluda, JA
    Perez, JJ
    Felici, S
    Dierickx, B
    Scheffer, D
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 1, 1996, : 373 - 376
  • [36] Restoration of space-variant blurred image using a wavelet transforms
    Hashimoto, S
    Saito, H
    SYSTEMS AND COMPUTERS IN JAPAN, 1996, 27 (14) : 76 - 84
  • [37] ACCOMMODATION OF SPACE-VARIANT EFFECTS IN SPACEBORNE SAR IMAGE FORMATION
    Prats-Iraola, Pau
    Rodiguez-Cassola, Marc
    Scheiber, Rolf
    Reigber, Andreas
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 938 - 941
  • [38] Space-variant image deblurring on smartphones using inertial sensors
    Sindelar, Ondrej
    Sroubek, Filip
    Milanfar, Peyman
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, : 191 - +
  • [39] Restoration of space-variant blurred image using a wavelet transform
    Hashimoto, Shoichi
    Saito, Hideo
    1996, Scripta Technica Inc, New York, NY, United States (27)
  • [40] Space-variant nonorthogonal structure CMOS image sensor design
    Pardo, F
    Dierickx, B
    Scheffer, D
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1998, 33 (06) : 842 - 849