Asymptotics for the Euler-Discretized Hull-White Stochastic Volatility Model

被引:3
|
作者
Pirjol, Dan [1 ]
Zhu, Lingjiong [2 ]
机构
[1] 277 Pk Ave, New York, NY 10172 USA
[2] Florida State Univ, Dept Math, 1017 Acad Way, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
Linear stochastic recursion; Lyapunov exponent; Phase transitions; Critical exponent; Large deviations; Central limit theorems; DISTRIBUTIONS; OPTIONS; SCHEME;
D O I
10.1007/s11009-017-9548-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the stochastic volatility model dS(t) = sigma(t)S(t)dW(t), d sigma(t) = omega sigma(t)dZ(t), with (W-t, Z(t)) uncorrelated standard Brownian motions. This is a special case of the Hull-White and the ss = 1 (log-normal) SABR model, which are widely used in financial practice. We study the properties of this model, discretized in time under several applications of the Euler-Maruyama scheme, and point out that the resulting model has certain properties which are different from those of the continuous time model. We study the asymptotics of the time-discretized model in the n -> infinity limit of a very large number of time steps of size tau, at fixed ss = 1/2 omega(2)tau n(2) and rho = sigma(2)(0)tau, and derive three results: i) almost sure limits, ii) fluctuation results, and iii) explicit expressions for growth rates (Lyapunov exponents) of the positive integer moments of St. Under the Euler-Maruyama discretization for (St, log st), the Lyapunov exponents have a phase transition, which appears in numerical simulations of the model as a numerical explosion of the asset price moments. We derive criteria for the appearance of these explosions.
引用
收藏
页码:289 / 331
页数:43
相关论文
共 50 条
  • [41] The hull-white model and multiobjective calibration with consistent curves: Empirical evidence [El Modelo de hull-white y la calibración multiobjetivo con curvas consistentes: Evidencia empírica]
    Falćo A.
    Navarro L.
    Nave J.
    RACSAM - Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2009, 103 (2): : 235 - 249
  • [42] Exotic put options on a diffusion (B, P)-bond market incase of Hull-White model
    Dyomin, Nikolay S.
    Tolstobokov, Vjacheslav V.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2010, 11 (02): : 13 - 24
  • [43] Management Strategies for a Defined Contribution Pension Fund under the Hull-White Interest Rate Model
    Mwanakatwe, Patrick Kandege
    Song, Lixin
    Hagenimana, Emmanuel
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELING AND SIMULATION (AMMS 2017), 2017, 153 : 239 - 244
  • [44] Short-term asymptotics for the implied volatility skew under a stochastic volatility model with Levy jumps
    Figueroa-Lopez, Jose E.
    Olafsson, Sveinn
    FINANCE AND STOCHASTICS, 2016, 20 (04) : 973 - 1020
  • [45] Short-term asymptotics for the implied volatility skew under a stochastic volatility model with Lévy jumps
    José E. Figueroa-López
    Sveinn Ólafsson
    Finance and Stochastics, 2016, 20 : 973 - 1020
  • [46] Consistent estimation for fractional stochastic volatility model under high-frequency asymptotics
    Fukasawa, Masaaki
    Takabatake, Tetsuya
    Westphal, Rebecca
    MATHEMATICAL FINANCE, 2022, 32 (04) : 1086 - 1132
  • [47] Stochastic volatility asymptotics of defaultable interest rate derivatives under a quadratic Gaussian model
    Yoon, Ji-Hun
    Kim, Jeong-Hoon
    Choi, Sun-Yong
    Han, Youngchul
    STOCHASTICS AND DYNAMICS, 2017, 17 (01)
  • [48] EXOTIC CALL OPTIONS WITH GUARANTEED INCOME AND LIMITEDPAYMENT IN THE DIFFUSION ( B, P)- BOND MARKET IN CASE OF HULL-WHITE MODEL
    Dyomin, N. S.
    Tolstobokov, V. V.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2010, 10 (01): : 13 - 24
  • [49] Convergence of an Euler Scheme for a Hybrid Stochastic-Local Volatility Model with Stochastic Rates in Foreign Exchange Markets
    Cozma, Andrei
    Mariapragassam, Matthieu
    Reisinger, Christoph
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2018, 9 (01): : 127 - 170
  • [50] Short-Maturity Asymptotics for a Fast Mean-Reverting Heston Stochastic Volatility Model
    Feng, Jin
    Forde, Martin
    Fouque, Jean-Pierre
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2010, 1 (01): : 126 - 141