Identification of Road Network Intersection Types from Vehicle Telemetry Data Using a Convolutional Neural Network

被引:0
|
作者
Erramaline, Abdelmajid [1 ,2 ]
Badard, Thierry [1 ,2 ]
Cote, Marie-Pier [2 ,3 ]
Duchesne, Thierry [2 ,4 ]
Mercier, Olivier [2 ,3 ]
机构
[1] Univ Laval, Ctr Res Geospatial Data & Intelligence, Quebec City, PQ G1V 0A6, Canada
[2] Univ Laval, Big Data Res Ctr, Quebec City, PQ G1V 0A6, Canada
[3] Univ Laval, Sch Actuarial Sci, Quebec City, PQ G1V 0A6, Canada
[4] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
car insurance; GPS traces; intersection; machine learning; road network;
D O I
10.3390/ijgi11090475
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
GPS trajectories collected from automotive telematics for insurance purposes go beyond being a collection of points on the map. They are in fact a powerful data source that we can use to extract map and road network properties. While the location of road junctions is readily available, the information about the traffic control element regulating the intersection is typically unknown. However, this information would be helpful, e.g., for contextualizing a driver's behavior. Our focus is to use a map-matched GPS OBD-dongle dataset provided by a Canadian insurance company to classify intersections into three classes according to the type of traffic control element present: traffic light, stop sign, or no sign. We design a convolutional neural network (CNN) for classifying intersections. The network takes as entries, for a defined number of trips, the speed and the acceleration profiles over each segment of one meter on a window around the intersection. Our method outperforms two other competing approaches, achieving 99% overall accuracy. Furthermore, our CNN model can infer the three classes even with as few as 25 trips.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Intersection Type Classification from Connected Vehicle Data Using a Convolutional Neural Network
    Enrique D. Saldivar-Carranza
    Saumabha Gayen
    Darcy M. Bullock
    Data Science for Transportation, 2024, 6 (1):
  • [2] Road and Intersection Detection Using Convolutional Neural Network
    Higuchi, Ryuki
    Fujimoto, Yasutaka
    2020 IEEE 16TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL (AMC), 2020, : 363 - 366
  • [3] Road Identification using Convolutional Neural Network on Autonomous Electric Vehicle
    Hermawan, Markus
    Husin, Zaenal
    Hikmarika, Hera
    Dwijayanti, Suci
    Suprapto, Bhakti Yudho
    2021 8TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTERSCIENCE AND INFORMATICS (EECSI) 2021, 2021, : 341 - 346
  • [4] Driver Identification Using Vehicle Diagnostic Data with Fully Convolutional Neural Network
    Aslan, Caner
    Genc, Yakup
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [5] Road Sign Identification with Convolutional Neural Network Using TensorFlow
    Kherarba, Mohammed
    Abbes, Mounir Tahar
    Boumerdassi, Selma
    Meddah, Mohammed
    Benhamada, Abdelhak
    Senouci, Mohammed
    MACHINE LEARNING FOR NETWORKING, MLN 2020, 2021, 12629 : 255 - 264
  • [6] Identification of Drivable Road Area from Orthophotos Using a Convolutional Neural Network
    Riid, Andri
    Pihlak, Rene
    Liinev, Raul
    2020 17TH BIENNIAL BALTIC ELECTRONICS CONFERENCE (BEC), 2020,
  • [7] Intelligent Intersection Vehicle and Pedestrian Detection Based on Convolutional Neural Network
    Yang, Senlin
    Chong, Xin
    Li, Xilong
    Li, Ruixing
    JOURNAL OF SENSORS, 2022, 2022
  • [8] Intelligent Intersection Vehicle and Pedestrian Detection Based on Convolutional Neural Network
    Yang, Senlin
    Chong, Xin
    Li, Xilong
    Li, Ruixing
    Journal of Sensors, 2022, 2022
  • [9] Vehicle Tracking using Convolutional Neural Network
    Shruthi, S.
    WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL II, 2011, : 1052 - 1055
  • [10] Confirmation of Electrical Network Configuration from Telemetry Data Based on Convolutional Neural Networks
    Myasnikov, E. Yu.
    Antonov, V.I.
    Soldatov, A.V.
    Razumov, R.V.
    Russian Electrical Engineering, 2024, 95 (08) : 617 - 624