Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing

被引:3
|
作者
Ramme, Austin J. [1 ,2 ,3 ]
Shivanna, Kiran H. [1 ,3 ]
Magnotta, Vincent A. [1 ,3 ,4 ]
Grosland, Nicole M. [1 ,3 ,5 ]
机构
[1] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA
[2] Univ Iowa, Carver Coll Med, Iowa City, IA 52242 USA
[3] Univ Iowa, Ctr Comp Aided Design, Iowa City, IA 52242 USA
[4] Univ Iowa, Dept Radiol, Iowa City, IA 52242 USA
[5] Univ Iowa, Dept Orthopaed & Rehabil, Iowa City, IA 52242 USA
关键词
finite element; hexahedral meshing; multi-block; Gaussian curvature; orthopaedic modelling; FINITE-ELEMENT MODEL; BONE SEGMENTATION; CT IMAGES; VALIDATION;
D O I
10.1080/10255842.2010.499869
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks.
引用
收藏
页码:893 / 904
页数:12
相关论文
共 50 条
  • [21] Block-wise exploration of molecular descriptors with Multi-block Orthogonal Component Analysis (MOCA)
    Schmidt, Sebastian
    Schindler, Michael
    Eriksson, Lennart
    MOLECULAR INFORMATICS, 2022, 41 (05)
  • [22] A numerical method for the dynamic seismic analysis of single-block and multi-block monumental structures
    Mitsopoulou, EN
    Paschalidis, VE
    Doudoumis, IN
    COMPUTATIONAL CIVIL AND STRUCTURAL ENGINEERING, 2000, : 159 - 167
  • [23] Dyadic analysis for multi-block data in sport surveys analytics
    Maria Iannario
    Rosaria Romano
    Domenico Vistocco
    Annals of Operations Research, 2023, 325 : 701 - 714
  • [24] Tuning Block Compositions of Polyethylene Multi-Block Copolymers by Catalyst Selection
    Kuhlman, Roger L.
    Klosin, Jerzy
    MACROMOLECULES, 2010, 43 (19) : 7903 - 7904
  • [25] Unstructured hexahedral mesh generation of complex vascular trees using a multi-block grid-based approach
    Bols, Joris
    Taelman, L.
    De Santis, G.
    Degroote, J.
    Verhegghe, B.
    Segers, P.
    Vierendeels, J.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2016, 19 (06) : 663 - 672
  • [26] Stimuli-responsive multi-block molecules
    Muraoka, Takahiro
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [27] Multi-block methods in multivariate process control
    Kohonen, Jarno
    Reinikainen, Satu-Pia
    Aaljoki, Kari
    Perkio, Annikki
    Vaananen, Taito
    Hoskuldsson, Agnar
    JOURNAL OF CHEMOMETRICS, 2008, 22 (11-12) : 580 - 586
  • [28] Biodegradable and stretchable multi-block semiconducting copolymers
    Sugiyama, Fumitaka
    Kleinschmidt, Andrew
    Alkhandra, Mohammad
    Wan, Jeremy
    Chiang, Andrew
    Rodriquez, Daniel
    Root, Samuel
    Savagatrup, Suchol
    Lipomi, Darren
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [29] On the Sublinear Convergence Rate of Multi-block ADMM
    Lin T.-Y.
    Ma S.-Q.
    Zhang S.-Z.
    Journal of the Operations Research Society of China, 2015, 3 (03) : 251 - 274
  • [30] Multi-block methods in multivariate process control
    Kohonen, Jarno
    Reinikainen, Satu-Pia
    Aaljoki, Kari
    Perkio, Annikki
    Vaananen, Taito
    Hoskuldsson, Agnar
    JOURNAL OF CHEMOMETRICS, 2008, 22 (3-4) : 281 - 287