Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing

被引:3
|
作者
Ramme, Austin J. [1 ,2 ,3 ]
Shivanna, Kiran H. [1 ,3 ]
Magnotta, Vincent A. [1 ,3 ,4 ]
Grosland, Nicole M. [1 ,3 ,5 ]
机构
[1] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA
[2] Univ Iowa, Carver Coll Med, Iowa City, IA 52242 USA
[3] Univ Iowa, Ctr Comp Aided Design, Iowa City, IA 52242 USA
[4] Univ Iowa, Dept Radiol, Iowa City, IA 52242 USA
[5] Univ Iowa, Dept Orthopaed & Rehabil, Iowa City, IA 52242 USA
关键词
finite element; hexahedral meshing; multi-block; Gaussian curvature; orthopaedic modelling; FINITE-ELEMENT MODEL; BONE SEGMENTATION; CT IMAGES; VALIDATION;
D O I
10.1080/10255842.2010.499869
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks.
引用
收藏
页码:893 / 904
页数:12
相关论文
共 50 条
  • [1] A COMPARISON OF TWO AUTOMATED BLOCK PLACEMENT METHODS FOR MULTI-BLOCK HEXAHEDRAL FINITE ELEMENT MESHING
    Ramme, Austin J.
    Shivanna, Kiran H.
    Magnotta, Vincent A.
    Grosland, Nicole M.
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE, 2010, 2010, : 749 - 750
  • [2] Block topology generation for structured multi-block meshing with hierarchical geometry handling
    Ali, Zaib
    Tyacke, James
    Tucker, Paul G.
    Shahpar, Shahrokh
    25TH INTERNATIONAL MESHING ROUNDTABLE, 2016, 163 : 212 - 224
  • [3] Reinforcement learning based automatic block decomposition of solid models for hexahedral meshing
    Zhang, Shuming
    Guan, Zhidong
    Wang, Xiaodong
    Tan, Pingan
    Jiang, Hao
    COMPUTER-AIDED DESIGN, 2025, 182
  • [4] A semi-automatic method for block-structured hexahedral meshing of aortic dissections
    Bosnjak, Domagoj
    Pepe, Antonio
    Schussnig, Richard
    Egger, Jan
    Fries, Thomas-Peter
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2024, 40 (11)
  • [5] Growing multiblock structures: a semi-automated approach to block placement for multiblock hexahedral meshing
    Ramme, Austin J.
    Shivanna, Kiran H.
    Criswell, Amy J.
    Kallemeyn, Nicole A.
    Magnotta, Vincent A.
    Grosland, Nicole M.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2012, 15 (10) : 1043 - 1052
  • [6] Automated two-dimensional multi-block meshing using the medial object
    Aircraft Research Association Ltd., Bedford, United Kingdom
    不详
    Proc. Int. Meshing Roundtable, IMR, (437-452):
  • [7] Modelling of multi-block data
    Hoskuldsson, Agnar
    Svinning, Ketil
    JOURNAL OF CHEMOMETRICS, 2006, 20 (8-10) : 376 - 385
  • [8] Bioinspired multi-block molecules
    Muraoka, Takahiro
    Kinbara, Kazushi
    CHEMICAL COMMUNICATIONS, 2016, 52 (13) : 2667 - 2678
  • [9] Automatic generation of quadrilateral multi-block topology for FEA/CFD applications
    Huang, SH
    Shi, J
    Maloo, S
    Steinthorsson, E
    IEEE ICIT' 02: 2002 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS I AND II, PROCEEDINGS, 2002, : 1300 - 1305
  • [10] Multi-Block Bipartite Graph for Integrative Genomic Analysis
    Kang, Mingon
    Park, Juyoung
    Kim, Dong-Chul
    Biswas, Ashis K.
    Liu, Chunyu
    Gao, Jean
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (06) : 1350 - 1358