Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications

被引:0
|
作者
Ghasemi-Kahrizsangi, Tahereh [1 ]
Marashi, Sayed-Amir [1 ]
Hosseini, Zhaleh [1 ]
机构
[1] Univ Tehran, Dept Biotechnol, Coll Sci, Tehran, Iran
关键词
Biochemical capability; Bacillus Species; Computational biotechnology; Model validation; Systems biology; AMINO-ACIDS; RECONSTRUCTION; VALIDATION; CATABOLISM;
D O I
10.21859/ijb.1684
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism's metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains. Objectives: In the present study, we have evaluated the predictive power of two GEMs, namely iBsu1103 (for Bacillus subtilis 168) and iMZ1055 (for Bacillus megaterium WSH002). Materials and Methods: For comparing the predictive power of Bacillus subtilis and Bacillus megateriuin GEMs, experimental data were obtained from previous wet-lab studies included in PubMed. By using these data, we set the environmental, stoichiometric and thermodynamic constraints on the models, and FBA is performed to predict the biomass production rate, and the values of other fluxes. For simulating experimental conditions in this study, COBRA toolbox was used. Results: By using the wealth of data in the literature, we evaluated the accuracy of in silico simulations of these GEMs. Our results suggest that there are some errors in these two models which make them unreliable for predicting the biochemical capabilities of these species. The inconsistencies between experimental and computational data are even greater where B. subtilis and B. megaterium do not have similar phenotypes. Conclusions: Our analysis suggests that literature-based improvement of genome-scale metabolic network models of the two Bacillus species is essential if these models are to be successfully applied in biotechnology and metabolic engineering.
引用
收藏
页码:164 / 172
页数:9
相关论文
共 50 条
  • [41] A genome-scale metabolic model of parasitic whipworm
    Ömer F. Bay
    Kelly S. Hayes
    Jean-Marc Schwartz
    Richard K. Grencis
    Ian S. Roberts
    Nature Communications, 14
  • [42] Improvement of l-arginine production by in silico genome-scale metabolic network model guided genetic engineering
    Mingzhu Huang
    Yue Zhao
    Rong Li
    Weihua Huang
    Xuelan Chen
    3 Biotech, 2020, 10
  • [43] A Genome-Scale Metabolic Model of Cryptosporidium hominis
    Vanee, Niti
    Roberts, Seth B.
    Fong, Stephen S.
    Manque, Patricio
    Buck, Gregory A.
    CHEMISTRY & BIODIVERSITY, 2010, 7 (05) : 1026 - 1039
  • [44] Improvement of l-arginine production by in silico genome-scale metabolic network model guided genetic engineering
    Huang, Mingzhu
    Zhao, Yue
    Li, Rong
    Huang, Weihua
    Chen, Xuelan
    3 BIOTECH, 2020, 10 (03)
  • [45] GEMtractor: extracting views into genome-scale metabolic models
    Scharm, Martin
    Wolkenhauer, Olaf
    Jalili, Mahdi
    Salehzadeh-Yazdi, Ali
    BIOINFORMATICS, 2020, 36 (10) : 3281 - 3282
  • [46] Machine learning applications in genome-scale metabolic modeling
    Kim, Yeji
    Kim, Gi Bae
    Lee, Sang Yup
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 25 : 42 - 49
  • [47] Use of genome-scale microbial models for metabolic engineering
    Patil, KR
    Åkesson, M
    Nielsen, J
    CURRENT OPINION IN BIOTECHNOLOGY, 2004, 15 (01) : 64 - 69
  • [48] Improving the genome-scale metabolic network of Arabidopsis thaliana
    Christian, Nils
    Ebenhoh, Oliver
    May, Patrick
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2009, 153A (02): : S227 - S228
  • [49] A PRACTICAL GUIDE TO GENOME-SCALE METABOLIC MODELS AND THEIR ANALYSIS
    Santos, Filipe
    Boele, Joost
    Teusink, Bas
    METHODS IN ENZYMOLOGY, VOL 500: METHODS IN SYSTEMS BIOLOGY, 2011, 500 : 509 - 532
  • [50] Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    Förster, J
    Famili, I
    Fu, P
    Palsson, BO
    Nielsen, J
    GENOME RESEARCH, 2003, 13 (02) : 244 - 253