Unsupervised Spectral-Spatial Semantic Feature Learning for Hyperspectral Image Classification

被引:34
|
作者
Xu, Huilin [1 ]
He, Wei [1 ]
Zhang, Liangpei [1 ]
Zhang, Hongyan [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Semantics; Representation learning; Iron; Image reconstruction; Task analysis; Training; Deep learning; high-level semantic; hyperspectral image (HSI) classification; unsupervised feature learning; DIMENSIONALITY REDUCTION; FEATURE-EXTRACTION; NETWORKS;
D O I
10.1109/TGRS.2022.3159789
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Can we automatically learn meaningful semantic feature representations when training labels are absent? Several recent unsupervised deep learning approaches have attempted to tackle this problem by solving the data reconstruction task. However, these methods can easily latch on low-level features. To solve this problem, we propose an end-to-end spectral-spatial semantic feature learning network (S3FN) for unsupervised deep semantic feature extraction (FE) from hyperspectral images (HSIs). Our main idea is to learn spectral-spatial features from high-level semantic perspective. First, we utilize the feature transformation to obtain two feature descriptions of the same source data from different views. Then, we propose the spectral-spatial feature learning network to project the two feature descriptions into the deep embedding space. Subsequently, a contrastive loss function is introduced to align the two projected features, which should have the same implied semantic meaning. The proposed S3FN learns the spectral and spatial features separately, and then merges them. Finally, the learned spectral-spatial features by S3FN are processed by a classifier to evaluate their effectiveness. Experimental results on three publicly available HSI datasets show that our proposed S3FN can produce promising classification results with a lower time cost than other state-of-the-art (SOTA) deep learning-based unsupervised FE methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Spectral-Spatial Response for Hyperspectral Image Classification
    Wei, Yantao
    Zhou, Yicong
    Li, Hong
    REMOTE SENSING, 2017, 9 (03):
  • [22] Spectral-Spatial Constraint Hyperspectral Image Classification
    Ji, Rongrong
    Gao, Yue
    Hong, Richang
    Liu, Qiong
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03): : 1811 - 1824
  • [23] Spectral-Spatial Mamba for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    REMOTE SENSING, 2024, 16 (13)
  • [24] A SPECTRAL-SPATIAL AUGMENTED ACTIVE LEARNING METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Falahatnejad, Sh.
    Karami, A.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 151 - 158
  • [25] Unsupervised spectral-spatial multiscale feature learning framework for hyperspectral image classification based on multiple kernel self-organizing maps
    Khattab, Noha
    Rashwan, Shaheera
    Ebied, Hala M.
    Sheta, Walaa
    Shedeed, Howida
    Tolba, Mohamed F.
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (04)
  • [26] A Multiview Spectral-Spatial Feature Extraction and Fusion Framework for Hyperspectral Image Classification
    Feng, Jia
    Zhang, Junping
    Zhang, Ye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [27] A Spectral-Spatial Multicriteria Active Learning Technique for Hyperspectral Image Classification
    Patra, Swarnajyoti
    Bhardwaj, Kaushal
    Bruzzone, Lorenzo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (12) : 5213 - 5227
  • [28] Embedding Learning on Spectral-Spatial Graph for Semisupervised Hyperspectral Image Classification
    Cao, Jiayan
    Wang, Bin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (10) : 1805 - 1809
  • [29] Adaptive Spectral-Spatial Multiscale Contextual Feature Extraction for Hyperspectral Image Classification
    Wang, Di
    Du, Bo
    Zhang, Liangpei
    Xu, Yonghao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (03): : 2461 - 2477
  • [30] Hyperspectral Image Classification Based on Deep Forest and Spectral-Spatial Cooperative Feature
    Li, Mingyang
    Zhang, Ning
    Pan, Bin
    Xie, Shaobiao
    Wu, Xi
    Shi, Zhenwei
    IMAGE AND GRAPHICS (ICIG 2017), PT III, 2017, 10668 : 325 - 336