DETERMINING HYPERBOLIC 3-MANIFOLDS BY THEIR SURFACES

被引:1
|
作者
McReynolds, D. B. [1 ]
Reid, A. W. [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
[2] Rice Univ, Dept Math, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
ISOSPECTRAL MANIFOLDS; COMMENSURABILITY; GEODESICS; SPECTRUM;
D O I
10.1090/proc/14219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove that the commensurability class of a closed, orientable, hyperbolic 3-manifold is determined by the surface subgroups of its fundamental group. Moreover, we prove that there can be only finitely many closed, orientable, hyperbolic 3-manifolds that have the same set of surfaces.
引用
收藏
页码:443 / 450
页数:8
相关论文
共 50 条
  • [21] Homotopy hyperbolic 3-manifolds are hyperbolic
    Gabai, D
    Meyerhoff, GR
    Thurston, N
    ANNALS OF MATHEMATICS, 2003, 157 (02) : 335 - 431
  • [22] Strong limit multiplicity for arithmetic hyperbolic surfaces and 3-manifolds
    Mikołaj Frączyk
    Inventiones mathematicae, 2021, 224 : 917 - 985
  • [23] MINIMAL SURFACES IN FINITE VOLUME NONCOMPACT HYPERBOLIC 3-MANIFOLDS
    Collin, Pascal
    Hauswirth, Laurent
    Mazet, Laurent
    Rosenberg, Harold
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (06) : 4293 - 4309
  • [24] Strong limit multiplicity for arithmetic hyperbolic surfaces and 3-manifolds
    Fraczyk, Mikolaj
    INVENTIONES MATHEMATICAE, 2021, 224 (03) : 917 - 985
  • [25] Minimal surfaces near short geodesics in hyperbolic 3-manifolds
    Mazet, Laurent
    Rosenberg, Harold
    ADVANCES IN MATHEMATICS, 2020, 372
  • [26] Depth of pleated surfaces in toroidal cusps of hyperbolic 3-manifolds
    Wu, Ying-Qing
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (04): : 2175 - 2189
  • [27] Macfarlane hyperbolic 3-manifolds
    Quinn, Joseph A.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1603 - 1632
  • [28] Tubes in hyperbolic 3-manifolds
    Przeworski, A
    TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 103 - 122
  • [29] Horocycles in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 961 - 973
  • [30] Horocycles in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    Geometric and Functional Analysis, 2016, 26 : 961 - 973