Tri-Partition Alphabet-Based State Prediction for Multivariate Time-Series

被引:1
|
作者
Wen, Zuo-Cheng [1 ]
Zhang, Zhi-Heng [1 ]
Zhou, Xiang-Bing [1 ,2 ]
Gu, Jian-Gang [1 ,3 ]
Shen, Shao-Peng [1 ,3 ]
Chen, Gong-Suo [1 ]
Deng, Wu [1 ,4 ]
机构
[1] Sichuan Tourism Univ, Sch Informat & Engn, Chengdu 610100, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Peoples R China
[3] Chengdu Univ Informat Technol, Sch Software Engn, Chengdu 610225, Peoples R China
[4] Civil Aviat Univ China, Sch Elect Informat & Automat, Tianjin 300300, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 23期
基金
中国国家自然科学基金;
关键词
multivariate time-series; k matrix nearest neighbor; tri-partition alphabet; state prediction; 3-WAY DECISION; SYMBOLIC REPRESENTATION; MODEL; SYSTEM;
D O I
10.3390/app112311294
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, predicting multivariate time-series (MTS) has attracted much attention to obtain richer semantics with similar or better performances. In this paper, we propose a tri-partition alphabet-based state (tri-state) prediction method for symbolic MTSs. First, for each variable, the set of all symbols, i.e., alphabets, is divided into strong, medium, and weak using two user-specified thresholds. With the tri-partitioned alphabet, the tri-state takes the form of a matrix. One order contains the whole variables. The other is a feature vector that includes the most likely occurring strong, medium, and weak symbols. Second, a tri-partition strategy based on the deviation degree is proposed. We introduce the piecewise and symbolic aggregate approximation techniques to polymerize and discretize the original MTS. This way, the symbol is stronger and has a bigger deviation. Moreover, most popular numerical or symbolic similarity or distance metrics can be combined. Third, we propose an along-across similarity model to obtain the k-nearest matrix neighbors. This model considers the associations among the time stamps and variables simultaneously. Fourth, we design two post-filling strategies to obtain a completed tri-state. The experimental results from the four-domain datasets show that (1) the tri-state has greater recall but lower precision; (2) the two post-filling strategies can slightly improve the recall; and (3) the along-across similarity model composed by the Triangle and Jaccard metrics are first recommended for new datasets.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Memetic algorithm for multivariate time-series segmentation
    Lim, Hyunki
    Choi, Heeseung
    Choi, Yeji
    Kim, Ig-Jae
    PATTERN RECOGNITION LETTERS, 2020, 138 : 60 - 67
  • [42] A NOTE ON IDENTIFICATION OF MULTIVARIATE TIME-SERIES MODELS
    MARAVALL, A
    JOURNAL OF ECONOMETRICS, 1981, 16 (02) : 237 - 247
  • [43] Segmentation of biological multivariate time-series data
    Nooshin Omranian
    Bernd Mueller-Roeber
    Zoran Nikoloski
    Scientific Reports, 5
  • [44] ESTIMATION OF MULTIVARIATE NONLINEAR TIME-SERIES MODELS
    THAVANESWARAN, A
    ABRAHAM, B
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1991, 29 (03) : 351 - 363
  • [45] PROCESS COMPONENTS FOR MULTIVARIATE TIME-SERIES ANALYSIS
    CROOKES, JG
    CROSTON, K
    SYPSAS, P
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1980, 31 (04) : 325 - 330
  • [46] Adaptive Multivariate Time-Series Anomaly Detection
    Lv, Jianming
    Wang, Yaquan
    Chen, Shengjing
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (04)
  • [47] CONDITIONAL FORECASTING WITH A MULTIVARIATE TIME-SERIES MODEL
    VANDERKNOOP, HS
    ECONOMICS LETTERS, 1986, 22 (2-3) : 233 - 236
  • [48] Distance function selection for multivariate time-series
    Morgachev, Gleb
    Goncharov, Alexey
    Strijov, Vadim
    2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: APPLICATIONS AND INNOVATIONS (IC-AIAI 2019), 2019, : 66 - 70
  • [49] A Multivariate Time-Series Based Approach for Quality Modeling in Wireless Networks
    Aguayo, Leonardo
    Fortes, Sergio
    Baena, Carlos
    Baena, Eduardo
    Barco, Raquel
    SENSORS, 2021, 21 (06) : 1 - 19
  • [50] COGNITIVE MULTIVARIATE TIME-SERIES AND ITS ANALYSIS
    GREGSON, RAM
    ACTA PSYCHOLOGICA, 1978, 42 (04) : 277 - 291