Optimization of Robot-Trajectory Planning with Nature-Inspired and Hybrid Quantum Algorithms

被引:8
|
作者
Schuetz, Martin J. A. [1 ,2 ,3 ]
Brubaker, J. Kyle [2 ]
Montagu, Henry [1 ,2 ,3 ]
van Dijk, Yannick [4 ]
Klepsch, Johannes [4 ]
Ross, Philipp [4 ]
Luckow, Andre [4 ]
Resende, Mauricio G. C. [5 ,6 ]
Katzgraber, Helmut G. [1 ,2 ,3 ,6 ]
机构
[1] Amazon Quantum Solut Lab, Seattle, WA 98170 USA
[2] Profess Serv, AWS Intelligent & Adv Compute Technol, Seattle, WA 98170 USA
[3] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
[4] BMW Grp, Munich, Germany
[5] Amazon com Inc, Bellevue, WA 98004 USA
[6] Univ Washington, Seattle, WA 98195 USA
关键词
Biomimetics - Genetic algorithms - Quantum theory - Robot programming;
D O I
10.1103/PhysRevApplied.18.054045
中图分类号
O59 [应用物理学];
学科分类号
摘要
We solve robot-trajectory planning problems at industry-relevant scales. Our end-to-end solution inte-grates highly versatile random-key algorithms with model stacking and ensemble techniques, as well as path relinking for solution refinement. The core optimization module consists of a biased random-key genetic algorithm. Through a distinct separation of problem-independent and problem-dependent mod-ules, we achieve an efficient problem representation, with a native encoding of constraints. We show that generalizations to alternative algorithmic paradigms such as simulated annealing are straightforward. We provide numerical benchmark results for industry-scale data sets. Our approach is found to consistently outperform greedy baseline results. To assess the capabilities of today's quantum hardware, we comple-ment the classical approach with results obtained on quantum annealing hardware, using qbsolv on Amazon Braket. Finally, we show how the latter can be integrated into our larger pipeline, providing a quantum-ready hybrid solution to the problem.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Nature-Inspired Optimization for Biped Robot Locomotion and Gait Planning
    Asta, Shahriar
    Sariel-Talay, Sanem
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, PT II, 2011, 6625 : 434 - 443
  • [2] Research Progress of Nature-Inspired Metaheuristic Algorithms in Mobile Robot Path Planning
    Xu, Yiqi
    Li, Qiongqiong
    Xu, Xuan
    Yang, Jiafu
    Chen, Yong
    ELECTRONICS, 2023, 12 (15)
  • [3] Nature-Inspired Algorithm Based Trajectory Planning for Inspection Flying Robot in Smart Grids
    Tenniche, Nesrine
    Boubekeur, Mendil
    Hocine, Lehouche
    Belkaid, Abdelhakim
    Colak, Ilhami
    Tighzert, Lyes
    12TH INTERNATIONAL CONFERENCE ON SMART GRID, ICSMARTGRID 2024, 2024, : 270 - 276
  • [4] KPLS Optimization With Nature-Inspired Metaheuristic Algorithms
    Mello-Roman, Jorge Daniel
    Hernandez, Adolfo
    IEEE ACCESS, 2020, 8 : 157482 - 157492
  • [5] A Brief Review of Nature-Inspired Algorithms for Optimization
    Fister, Iztok, Jr.
    Yang, Xin-She
    Fister, Iztok
    Brest, Janez
    Fister, Dusan
    ELEKTROTEHNISKI VESTNIK, 2013, 80 (03): : 116 - 122
  • [6] A brief review of nature-inspired algorithms for optimization
    1600, Electrotechnical Society of Slovenia (80):
  • [7] Attraction and diffusion in nature-inspired optimization algorithms
    Yang, Xin-She
    Deb, Suash
    Hanne, Thomas
    He, Xingshi
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (07): : 1987 - 1994
  • [8] Attraction and diffusion in nature-inspired optimization algorithms
    Xin-She Yang
    Suash Deb
    Thomas Hanne
    Xingshi He
    Neural Computing and Applications, 2019, 31 : 1987 - 1994
  • [9] Nature-inspired Hybrid Optimization Algorithms for Load Flow Analysis of Islanded Microgrids
    Saad Mohammad Abdullah
    Ashik Ahmed
    Quazi Nafees Ul Islam
    JournalofModernPowerSystemsandCleanEnergy, 2020, 8 (06) : 1250 - 1258
  • [10] Nature-inspired Hybrid Optimization Algorithms for Load Flow Analysis of Islanded Microgrids
    Abdullah, Saad Mohammad
    Ahmed, Ashik
    Ul Islam, Quazi Nafees
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2020, 8 (06) : 1250 - 1258