Recurrent Multi-task Graph Convolutional Networks for COVID-19 Knowledge Graph Link Prediction

被引:2
|
作者
Kim, Remington [1 ]
Ning, Yue [2 ]
机构
[1] Bergen Cty Acad, Hackensack, NJ 07601 USA
[2] Stevens Inst Technol, Hoboken, NJ 07030 USA
关键词
Recurrent graph convolutional networks; Multi-task learning; COVID-19 knowledge graph; Link prediction;
D O I
10.1007/978-3-030-96498-6_24
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Knowledge graphs (KGs) are a way to model data involving intricate relations between a number of entities. Understanding the information contained in KGs and predicting what hidden relations may be present can provide valuable domain-specific knowledge. Thus, we use data provided by the 5th Annual Oak Ridge National Laboratory Smoky Mountains Computational Sciences Data Challenge 2 as well as auxiliary textual data processed with natural language processing techniques to form and analyze a COVID-19 KG of biomedical concepts and research papers. Moreover, we propose a recurrent graph convolutional network model that predicts both the existence of novel links between concepts in this COVID-19 KG and the time at which the link will form. We demonstrate our model's promising performance against several baseline models. The utilization of our work can give insights that are useful in COVID-19-related fields such as drug development and public health. All code for our paper is publicly available at https://github.com/RemingtonKim/SMCDC2021.
引用
收藏
页码:411 / 419
页数:9
相关论文
共 50 条
  • [41] Rethinking Graph Convolutional Networks in Knowledge Graph Completion
    Zhang, Zhanqiu
    Wang, Jie
    Ye, Jieping
    Wu, Feng
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 798 - 807
  • [42] Multi-task graph neural networks for simultaneous prediction of global and atomic properties in ferromagnetic systems *
    Pasini, Massimiliano Lupo
    Zhang, Pei
    Reeve, Samuel Temple
    Choi, Jong Youl
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (02):
  • [43] Recurrent Graph Convolutional Network-Based Multi-Task Transient Stability Assessment Framework in Power System
    Huang, Jiyu
    Guan, Lin
    Su, Yinsheng
    Yao, Haicheng
    Guo, Mengxuan
    Zhong, Zhi
    IEEE ACCESS, 2020, 8 : 93283 - 93296
  • [44] Recommendation Algorithm for Graph Convolutional Networks based on Multi-Ralational Knowledge Graph
    Li, Yunhao
    Chen, Shijie
    Zhao, Jiancheng
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY, AND SECURITY COMPANION, QRS-C, 2022, : 425 - 430
  • [45] Hierarchical Aggregation Based Knowledge Graph Embedding for Multi-task Recommendation
    Wang, Yani
    Zhang, Ji
    Zhou, Xiangmin
    Zhang, Yang
    WEB AND BIG DATA, PT III, APWEB-WAIM 2022, 2023, 13423 : 174 - 181
  • [46] Community preserving adaptive graph convolutional networks for link prediction in attributed networks
    He, Chaobo
    Cheng, Junwei
    Fei, Xiang
    Weng, Yu
    Zheng, Yulong
    Tang, Yong
    KNOWLEDGE-BASED SYSTEMS, 2023, 272
  • [47] Multi-task Learning for Hyper-Relational Knowledge Graph Completion
    Yin, Jiaqian
    Zhou, Jie
    Shan, Yongxue
    Peng, Jie
    Liu, Haijiao
    Zhou, Xin
    Wang, Xiaodong
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14877 : 115 - 126
  • [48] MTKGR: multi-task knowledge graph reasoning for food and ingredient recognition
    Feng, Zhengquan
    Li, Xiaochao
    Li, Yun
    MULTIMEDIA SYSTEMS, 2024, 30 (03)
  • [49] Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction
    Chen, Hongxu
    Yin, Hongzhi
    Sun, Xiangguo
    Chen, Tong
    Gabrys, Bogdan
    Musial, Katarzyna
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1503 - 1511
  • [50] MUKG: Unifying Multi-Task and Knowledge Graph Method for Recommender System
    Sun, Jingyu
    Shagar, Md Masum Billa
    PROCEEDINGS OF 2020 2ND INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MACHINE VISION AND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND MACHINE LEARNING, IPMV 2020, 2020, : 14 - 21