Structure of a code related to Sp(4, q), q even

被引:1
|
作者
Sastry, N. S. Narasimha [1 ]
Shukla, R. P. [2 ]
机构
[1] Indian Stat Inst, Stat Math Unit, Bangalore 560059, Karnataka, India
[2] Univ Allahabad, Dept Math, Allahabad 211002, Uttar Pradesh, India
关键词
generalized quadrangle; symplectic group; socle layers; Steinberg module;
D O I
10.1007/s12044-007-0038-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the socle and the radical series of the binary code associated with a finite regular generalized quadrangle of even order, considered as a module for the commutator of each of the orthogonal subgroups in the corresponding symplectic group.
引用
收藏
页码:457 / 470
页数:14
相关论文
共 50 条
  • [21] Semiproportional irreducible characters of the groups Sp(4)(q) and PSp(4)(q) for odd q
    Belonogov, V. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (01): : 25 - 40
  • [22] PUSHING UP SP(4, Q), Q-ODD
    MEIERFRANKENFELD, U
    JOURNAL OF ALGEBRA, 1988, 112 (02) : 467 - 477
  • [23] On k-caps in PG(n, q), with q even and n ≥ 4
    Thas, J. A.
    DISCRETE MATHEMATICS, 2018, 341 (04) : 1072 - 1077
  • [24] Radical 3-subgroups of F4(q) with q even
    An, Jianbei
    Dietrich, Heiko
    JOURNAL OF ALGEBRA, 2014, 398 : 542 - 568
  • [25] Nonexistence of a [gq(5,d),5,d]q code for 3q4-4q3-2q+1 ≤ d ≤ 3q4-4q3-q
    Cheon, E. J.
    Kato, T.
    Kim, S. J.
    DISCRETE MATHEMATICS, 2008, 308 (14) : 3082 - 3089
  • [26] On 1-Systems of Q(6, q), q Even
    D. Luyckx
    J. A. Thas
    Designs, Codes and Cryptography, 2003, 29 : 179 - 197
  • [27] On 1-systems of Q(6,q),q even
    Luyckx, D
    Thas, JA
    DESIGNS CODES AND CRYPTOGRAPHY, 2003, 29 (1-3) : 179 - 197
  • [28] TENSORIAL STRUCTURE OF A Q-DEFORMED SP(4, R) SUPERALGEBRA
    GEORGIEVA, A
    DANKOVA, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (04): : 1251 - 1260
  • [29] BRAUER TREES OF SP(4,Q)
    WHITE, DL
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (03) : 645 - 653
  • [30] Decomposition numbers of Sp(4, q)
    Okuyama, T
    Waki, K
    JOURNAL OF ALGEBRA, 1998, 199 (02) : 544 - 555