First-order ground non-monotonic modal logic

被引:0
|
作者
Grimberg, Benjamin
Kaminski, Michael [1 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
关键词
first-order ground non-monotonic modal logic; first-order default logic; preference semantics; minimal model semantics; Herbrand semantics;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the extension of propositional ground non-monotonic modal logic to the first-order case. We show that first-order ground non-monotonic modal logic well complies with first-order default logic by interpreting the latter in the former by the Truszczynski like translation and present a minimal model semantics of first-order ground non-monotonic modal logic.
引用
收藏
页码:253 / 276
页数:24
相关论文
共 50 条
  • [21] Redundancy in logic III: Non-monotonic reasoning
    Liberatore, Paolo
    ARTIFICIAL INTELLIGENCE, 2008, 172 (11) : 1317 - 1359
  • [22] Non-monotonic Logic and the Compatibility of Science and Religion
    Marcin Trepczyński
    Logica Universalis, 2019, 13 : 457 - 466
  • [23] Prolegomena to logic programming for non-monotonic reasoning
    Dix, J
    Pereira, LM
    Przymusinski, T
    NON-MONOTONIC EXTENSIONS OF LOGIC PROGRAMMING, 1997, 1216 : 1 - 36
  • [24] A Non-monotonic Logic for Specifying and Querying Preferences
    Boella, Guido
    van der Torre, Leendert
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 1549 - 1550
  • [25] Executable temporal logic for non-monotonic reasoning
    Engelfriet, J
    Treur, J
    JOURNAL OF SYMBOLIC COMPUTATION, 1996, 22 (5-6) : 615 - 625
  • [26] NoMoRe: Non-monotonic reasoning with logic programs
    Anger, C
    Konczak, K
    Linke, T
    LOGICS IN ARTIFICIAL INTELLIGENCE 8TH, 2002, 2424 : 521 - 524
  • [27] Non-monotonic Logic and the Compatibility of Science and Religion
    Trepczynski, Marcin
    LOGICA UNIVERSALIS, 2019, 13 (04) : 457 - 466
  • [28] Neighborhood-Sheaf Semantics for First-Order Modal Logic
    Kishida, Kohei
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2011, 278 : 129 - 143
  • [29] TOPOLOGY AND MODALITY: THE TOPOLOGICAL INTERPRETATION OF FIRST-ORDER MODAL LOGIC
    Awodey, Steve
    Kishida, Kohei
    REVIEW OF SYMBOLIC LOGIC, 2008, 1 (02): : 146 - 166
  • [30] First-Order Modal Logic: Frame Definability and a Lindstrom Theorem
    Zoghifard, R.
    Pourmahdian, M.
    STUDIA LOGICA, 2018, 106 (04) : 699 - 720