Closest Pair and the Post Office Problem for Stochastic Points

被引:0
|
作者
Kamousi, Pegah [1 ]
Chan, Timothy M. [2 ]
Suri, Subhash [1 ]
机构
[1] UC Santa Barbara, Comp Sci, Santa Barbara, CA 93106 USA
[2] Univ Waterloo, Comp Sci, Waterloo, ON N2L 3G1, Canada
来源
基金
美国国家科学基金会;
关键词
COMPLEXITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a (master) set M of n points in d-dimensional Euclidean space, consider drawing a random subset that includes each point m(i) is an element of M with an independent probability p(i). How difficult is it to compute elementary statistics about the closest pair of points in such a subset? For instance, what is the probability that the distance between the closest pair of points in the random subset is no more than l, for a given value l? Or, can we preprocess the master set M such that given a query point q, we can efficiently estimate the expected distance from q to its nearest neighbor in the random subset? We obtain hardness results and approximation algorithms for stochastic problems of this kind.
引用
收藏
页码:548 / +
页数:2
相关论文
共 50 条