New types of one-dimensional discrete breathers in a two-dimensional lattice

被引:4
|
作者
Semenov, A. S. [1 ]
Murzaev, R. T. [2 ]
Bebikhov, Yu, V [1 ]
Kudreyko, A. A. [3 ]
Dmitriev, S., V [2 ,4 ]
机构
[1] North Eastern Fed Univ, Mirny Polytech Inst Branch, 5 Tikhonova St, Mirny 678174, Russia
[2] RAS, Inst Met Superplastic Problems, 39 S Khalturin St, Ufa 450001, Russia
[3] Bashkir State Med Univ, Dept Med Phys & Informat, 3 Lenina St, Ufa 450008, Russia
[4] Inst Mol & Crystal Phys UFRC RAS, 71 Oktyabrya Av, Ufa 450054, Russia
来源
LETTERS ON MATERIALS | 2020年 / 10卷 / 02期
基金
俄罗斯基础研究基金会;
关键词
crystal lattice; nonlinear lattice dynamics; discrete breather; delocalized nonlinear vibrational mode; molecular dynamics; LOCALIZED VIBRATIONAL-MODES; SYMMETRY; DYNAMICS; SYSTEMS;
D O I
10.22226/2410-3535-2020-2-185-188
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Discrete breather (DB) is a spatially localized and periodic in time, large-amplitude vibrational mode in a nonlinear lattice. According to some experimental and a number of molecular dynamics studies, crystal lattices support various types of DBs. The final goal in the study of DBs is to understand their impact on macroscopic crystal properties. This aim cannot be achieved without further data collection on the properties of all types of DBs supported by the crystals. Recently k-dimensional DBs in n-dimensional crystal lattices (k < n) have been introduced. Such DBs are delocalized in k dimensions and localized in n - k dimensions. In the present study 2D triangular lattice with the classical Lennard-Jones potential is considered (n = 2) and new types of one-dimensional DBs (k = 1) are presented. The DBs are localized in one close-packed atomic row and the vibration amplitudes of the atoms decrease exponentially with the distance from this row. Quite general approach for excitation of such DBs is used, which is based on the delocalized nonlinear vibrational modes (DNVMs) derived by Chechin with co-authors for a nonlinear chain. We find that DNVMs reported by them produce one-component and two-component, one-dimensional DBs with relatively long lifetime in the triangular lattice. Our results contribute to the theory of nonlinear lattice dynamics and eventually will help to understand the role of DBs in crystalline solids.
引用
收藏
页码:185 / 188
页数:4
相关论文
共 50 条
  • [11] One-dimensional phase transitions in a two-dimensional optical lattice
    Rehn, M.
    Bergkvist, S.
    Rosengren, A.
    Saers, R.
    Zelan, M.
    Lundh, E.
    Kastberg, A.
    EUROPEAN PHYSICAL JOURNAL D, 2008, 49 (02): : 223 - 230
  • [12] One-dimensional phase transitions in a two-dimensional optical lattice
    M. Rehn
    S. Bergkvist
    A. Rosengren
    R. Saers
    M. Zelán
    E. Lundh
    A. Kastberg
    The European Physical Journal D, 2008, 49 : 223 - 230
  • [13] ONE-DIMENSIONAL RANDOMNESS ON A TWO-DIMENSIONAL LATTICE - A SOLUBLE MODEL
    ZIEGLER, K
    PHYSICAL REVIEW B, 1987, 35 (10): : 5273 - 5275
  • [14] One-dimensional Luttinger liquids in a two-dimensional moire lattice
    Wang, Pengjie
    Yu, Guo
    Kwan, Yves H.
    Jia, Yanyu
    Lei, Shiming
    Klemenz, Sebastian
    Cevallos, F. Alexandre
    Singha, Ratnadwip
    Devakul, Trithep
    Watanabe, Kenji
    Taniguchi, Takashi
    Sondhi, Shivaji L.
    Cava, Robert J.
    Schoop, Leslie M.
    Parameswaran, Siddharth A.
    Wu, Sanfeng
    NATURE, 2022, 605 (7908) : 57 - +
  • [15] One-dimensional Luttinger liquids in a two-dimensional moiré lattice
    Pengjie Wang
    Guo Yu
    Yves H. Kwan
    Yanyu Jia
    Shiming Lei
    Sebastian Klemenz
    F. Alexandre Cevallos
    Ratnadwip Singha
    Trithep Devakul
    Kenji Watanabe
    Takashi Taniguchi
    Shivaji L. Sondhi
    Robert J. Cava
    Leslie M. Schoop
    Siddharth A. Parameswaran
    Sanfeng Wu
    Nature, 2022, 605 : 57 - 62
  • [16] Two-dimensional discrete breathers in hcp titanium
    Bachurina, O. V.
    Murzaev, R. T.
    Semenova, M. N.
    Semenov, A. S.
    Ryabov, D. S.
    Chechin, G. M.
    Korznikova, E. A.
    Dmitriev, S. V.
    OPEN SCHOOL-CONFERENCE OF NIS COUNTRIES ULTRAFINE GRAINED AND NANOSTRUCTURED MATERIALS, 2018, 447
  • [17] Two-dimensional discrete breathers in fcc metals
    Bachurina, O., V
    Kudreyko, A. A.
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 182 (182)
  • [18] Discrete breathers in two-dimensional nonlinear lattices
    Feng, Bao-Feng
    Kawahara, Takuji
    WAVE MOTION, 2007, 45 (1-2) : 68 - 82
  • [19] Discrete Breathers in One-Dimensional Diatomic Granular Crystals
    Boechler, N.
    Theocharis, G.
    Job, S.
    Kevrekidis, P. G.
    Porter, Mason A.
    Daraio, C.
    PHYSICAL REVIEW LETTERS, 2010, 104 (24)
  • [20] Discrete breathers in a two-dimensional Morse lattice with an on-site harmonic potential
    Lue, Bin-bin
    Tian, Qiang
    FRONTIERS OF PHYSICS IN CHINA, 2009, 4 (04): : 497 - 504