Separating Sensor Anomalies From Process Anomalies in Data-Driven Anomaly Detection

被引:6
|
作者
LaRosa, Nicholas [1 ]
Farber, Jacob [2 ]
Venkitasubramaniam, Parv [1 ]
Blum, Rick [1 ]
Al Rashdan, Ahmad [2 ]
机构
[1] Lehigh Univ, Elect & Comp Engn Dept, Bethlehem, PA 18015 USA
[2] Idaho Natl Lab, Idaho Falls, ID 83415 USA
关键词
Anomaly detection; Reliability; Detectors; Data models; Government; History; Reliability theory; Sensor and process anomalies; nested hypothesis test;
D O I
10.1109/LSP.2022.3193903
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Data-driven anomaly detection over time series data is studied from the perspective of separating data anomalies-corresponding to sensor failures-from process anomalies-that arise from equipment or operational failures. A semi-supervised approach is proposed that utilizes two predictive models trained on non-anomalous data using two different sensor groups as inputs, and a nested hypothesis test to reliably classify data or process anomalies. Conditions are derived on choice of sensor groups to guarantee reliable detection, and a case study is presented to demonstrate the proposed classification approach.
引用
收藏
页码:1704 / 1708
页数:5
相关论文
共 50 条
  • [21] A data driven approach for detection and isolation of anomalies in a group of UAVs
    Wang Yin
    Wang Daobo
    Wang Jianhong
    Chinese Journal of Aeronautics, 2015, (01) : 206 - 213
  • [22] A data driven approach for detection and isolation of anomalies in a group of UAVs
    Yin, Wang
    Wang Daobo
    Wang Jianhong
    CHINESE JOURNAL OF AERONAUTICS, 2015, 28 (01) : 206 - 213
  • [23] A data driven approach for detection and isolation of anomalies in a group of UAVs
    Wang Yin
    Wang Daobo
    Wang Jianhong
    Chinese Journal of Aeronautics, 2015, 28 (01) : 206 - 213
  • [24] Data-driven failure diagnosis in transmission protection system with multiple events and data anomalies
    Amir GHOLAMI
    Anurag K.SRIVASTAVA
    Shikhar PANDEY
    JournalofModernPowerSystemsandCleanEnergy, 2019, 7 (04) : 767 - 778
  • [25] Data-driven failure diagnosis in transmission protection system with multiple events and data anomalies
    Gholami, Amir
    Srivastava, Anurag K.
    Pandey, Shikhar
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2019, 7 (04) : 767 - 778
  • [26] DETECTION AND CLASSIFICATION OF SENSOR ANOMALIES IN GAS TURBINE FIELD DATA
    Ceschini, Giuseppe Fabio
    Manservigi, Lucrezia
    Bechini, Giovanni
    Venturini, Mauro
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2018, VOL 9, 2018,
  • [27] A hybrid data-driven framework for satellite telemetry data anomaly detection
    Xu, Zhaoping
    Cheng, Zhijun
    Guo, Bo
    ACTA ASTRONAUTICA, 2023, 205 : 281 - 294
  • [28] Anomaly Detection in Flight Recorder Data: A Dynamic Data-driven Approach
    Das, Santanu
    Sarkar, Soumalya
    Ray, Asok
    Srivastava, Ashok
    Simon, Donald L.
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 2668 - 2673
  • [29] SaliencyCut: Augmenting plausible anomalies for anomaly detection
    Ye, Jianan
    Hu, Yijie
    Yang, Xi
    Wang, Qiu-Feng
    Huang, Chao
    Huang, Kaizhu
    PATTERN RECOGNITION, 2024, 153
  • [30] A Data-driven Preprocessing Scheme on Anomaly Detection in Big Data Applications
    Xu, Shengjie
    Qian, Yi
    Hu, Rose Qingyang
    2017 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2017, : 814 - 819