Separating Sensor Anomalies From Process Anomalies in Data-Driven Anomaly Detection

被引:6
|
作者
LaRosa, Nicholas [1 ]
Farber, Jacob [2 ]
Venkitasubramaniam, Parv [1 ]
Blum, Rick [1 ]
Al Rashdan, Ahmad [2 ]
机构
[1] Lehigh Univ, Elect & Comp Engn Dept, Bethlehem, PA 18015 USA
[2] Idaho Natl Lab, Idaho Falls, ID 83415 USA
关键词
Anomaly detection; Reliability; Detectors; Data models; Government; History; Reliability theory; Sensor and process anomalies; nested hypothesis test;
D O I
10.1109/LSP.2022.3193903
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Data-driven anomaly detection over time series data is studied from the perspective of separating data anomalies-corresponding to sensor failures-from process anomalies-that arise from equipment or operational failures. A semi-supervised approach is proposed that utilizes two predictive models trained on non-anomalous data using two different sensor groups as inputs, and a nested hypothesis test to reliably classify data or process anomalies. Conditions are derived on choice of sensor groups to guarantee reliable detection, and a case study is presented to demonstrate the proposed classification approach.
引用
收藏
页码:1704 / 1708
页数:5
相关论文
共 50 条
  • [1] Data-driven Detection and Context-based Classification of Maritime Anomalies
    Pallotta, Giuliana
    Jousselme, Anne-Laure
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 1152 - 1159
  • [2] Anomaly detection in streaming environmental sensor data: A data-driven modeling approach
    Hill, David J.
    Minsker, Barbara S.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2010, 25 (09) : 1014 - 1022
  • [3] Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks
    Li, Gang
    He, Bin
    Huang, Hongwei
    Tang, Limin
    SENSORS, 2016, 16 (10)
  • [4] A data-driven algorithm for detecting anomalies in underwater sensor-based wave height measurements
    Scordamaglia, Valerio
    Ferraro, Alessia
    Gurnari, Luana
    Ruffa, Filippo
    De Capua, Claudio
    Filianoti, Pasquale Giuseppe
    2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR THE SEA; LEARNING TO MEASURE SEA HEALTH PARAMETERS, METROSEA, 2023, : 21 - 26
  • [5] Sensor Data-Driven UAV Anomaly Detection using Deep Learning Approach
    Galvan, Julio
    Raja, Ashok
    Li, Yanyan
    Yuan, Jiawei
    2021 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2021), 2021,
  • [6] Data-Driven Anomaly Detection in Autonomous Platoon
    Ucar, Seyhan
    Ergen, Sinem Coleri
    Ozkasap, Oznur
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [7] Data-Driven Network Intelligence for Anomaly Detection
    Xu, Shengjie
    Qian, Yi
    Hu, Rose Qingyang
    IEEE NETWORK, 2019, 33 (03): : 88 - 95
  • [8] Study on Optimization of Data-Driven Anomaly Detection
    Zhou, Yiqing
    Liao, Rui
    Chen, Yongjia
    2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 123 - 127
  • [9] Data-Driven Remaining Useful Life Prediction Considering Sensor Anomaly Detection and Data Recovery
    Liu, Liansheng
    Guo, Qing
    Liu, Datong
    Peng, Yu
    IEEE ACCESS, 2019, 7 : 58336 - 58345
  • [10] Data-Driven Anomaly Detection for UAV Sensor Data Based on Deep Learning Prediction Model
    Wang, Benkuan
    Wang, Zeyang
    Liu, Liansheng
    Liu, Datong
    Peng, Xiyuan
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-PARIS), 2019, : 286 - 290