Quantum Exploration Algorithms for Multi-Armed Bandits

被引:0
|
作者
Wang, Daochen [1 ,2 ]
You, Xuchen [1 ,3 ,4 ]
Li, Tongyang [1 ,3 ,4 ,5 ]
Childs, Andrew M. [1 ,3 ,4 ]
机构
[1] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[4] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
[5] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
来源
THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2021年 / 35卷
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying the best arm of a multi-armed bandit is a central problem in bandit optimization. We study a quantum computational version of this problem with coherent oracle access to states encoding the reward probabilities of each arm as quantum amplitudes. Specifically, we provide an algorithm to find the best arm with fixed confidence based on variable-time amplitude amplification and estimation. This algorithm gives a quadratic speedup compared to the best possible classical result in terms of query complexity. We also prove a matching quantum lower bound (up to poly-logarithmic factors).
引用
收藏
页码:10102 / 10110
页数:9
相关论文
共 50 条
  • [41] Multi-armed bandits for performance marketing
    Gigli, Marco
    Stella, Fabio
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [42] Lenient Regret for Multi-Armed Bandits
    Merlis, Nadav
    Mannor, Shie
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8950 - 8957
  • [43] Finding structure in multi-armed bandits
    Schulz, Eric
    Franklin, Nicholas T.
    Gershman, Samuel J.
    COGNITIVE PSYCHOLOGY, 2020, 119
  • [44] ON MULTI-ARMED BANDITS AND DEBT COLLECTION
    Czekaj, Lukasz
    Biegus, Tomasz
    Kitlowski, Robert
    Tomasik, Pawel
    36TH ANNUAL EUROPEAN SIMULATION AND MODELLING CONFERENCE, ESM 2022, 2022, : 137 - 141
  • [45] Visualizations for interrogations of multi-armed bandits
    Keaton, Timothy J.
    Sabbaghi, Arman
    STAT, 2019, 8 (01):
  • [46] Multi-armed bandits with dependent arms
    Singh, Rahul
    Liu, Fang
    Sun, Yin
    Shroff, Ness
    MACHINE LEARNING, 2024, 113 (01) : 45 - 71
  • [47] On Kernelized Multi-Armed Bandits with Constraints
    Zhou, Xingyu
    Ji, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [48] Multi-Armed Bandits in Metric Spaces
    Kleinberg, Robert
    Slivkins, Aleksandrs
    Upfal, Eli
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 681 - +
  • [49] Multi-Armed Bandits With Costly Probes
    Elumar, Eray Can
    Tekin, Cem
    Yagan, Osman
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2025, 71 (01) : 618 - 643
  • [50] On Optimal Foraging and Multi-armed Bandits
    Srivastava, Vaibhav
    Reverdy, Paul
    Leonard, Naomi E.
    2013 51ST ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2013, : 494 - 499