Quantum Exploration Algorithms for Multi-Armed Bandits

被引:0
|
作者
Wang, Daochen [1 ,2 ]
You, Xuchen [1 ,3 ,4 ]
Li, Tongyang [1 ,3 ,4 ,5 ]
Childs, Andrew M. [1 ,3 ,4 ]
机构
[1] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[4] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
[5] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying the best arm of a multi-armed bandit is a central problem in bandit optimization. We study a quantum computational version of this problem with coherent oracle access to states encoding the reward probabilities of each arm as quantum amplitudes. Specifically, we provide an algorithm to find the best arm with fixed confidence based on variable-time amplitude amplification and estimation. This algorithm gives a quadratic speedup compared to the best possible classical result in terms of query complexity. We also prove a matching quantum lower bound (up to poly-logarithmic factors).
引用
收藏
页码:10102 / 10110
页数:9
相关论文
共 50 条
  • [1] Quantum greedy algorithms for multi-armed bandits
    Hiroshi Ohno
    Quantum Information Processing, 22
  • [2] Quantum greedy algorithms for multi-armed bandits
    Ohno, Hiroshi
    QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
  • [3] Decentralized Exploration in Multi-Armed Bandits
    Feraud, Raphael
    Alami, Reda
    Laroche, Romain
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [4] On Interruptible Pure Exploration in Multi-Armed Bandits
    Shleyfman, Alexander
    Komenda, Antonin
    Domshlak, Carmel
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3592 - 3598
  • [5] Combinatorial Pure Exploration of Multi-Armed Bandits
    Chen, Shouyuan
    Lin, Tian
    King, Irwin
    Lyu, Michael R.
    Chen, Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [6] Pure Exploration in Multi-armed Bandits Problems
    Bubeck, Sebastien
    Munos, Remi
    Stoltz, Gilles
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2009, 5809 : 23 - +
  • [7] Algorithms for Differentially Private Multi-Armed Bandits
    Tossou, Aristide C. Y.
    Dimitrakakis, Christos
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2087 - 2093
  • [8] Optimal Algorithms for Multiplayer Multi-Armed Bandits
    Wang, Po-An
    Proutiere, Alexandre
    Ariu, Kaito
    Jedra, Yassir
    Russo, Alessio
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [9] Optimal Streaming Algorithms for Multi-Armed Bandits
    Jin, Tianyuan
    Huang, Keke
    Tang, Jing
    Xiao, Xiaokui
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [10] Quantum Reinforcement Learning for Multi-Armed Bandits
    Liu, Yi-Pei
    Li, Kuo
    Cao, Xi
    Jia, Qing-Shan
    Wang, Xu
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5675 - 5680