Optimal Harvest of a Stochastic Predator-Prey Model

被引:1
|
作者
Lv, Jingliang [1 ]
Wang, Ke [1 ,2 ]
机构
[1] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
[2] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
LOTKA-VOLTERRA MODEL; POPULATION-DYNAMICS; RANDOM PERTURBATION; BEHAVIOR; ENVIRONMENT; SYSTEM; POLICY; NOISE;
D O I
10.1155/2011/312465
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We firstly show the permanence of hybrid prey-predator system. Then, when both white and color noises are taken into account, we examine the asymptotic properties of stochastic prey-predator model with Markovian switching. Finally, the optimal harvest policy of stochastic prey-predator model perturbed by white noise is considered.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Optimal control study of a predator-prey model with nonlinear prey harvesting
    Han, Xiaotao
    Liu, Hua
    Wei, Yumei
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [32] Degenerate Hopf bifurcation in a Leslie-Gower predator-prey model with predator harvest
    Su, Juan
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [33] Dynamic of a stochastic predator-prey population
    Yagi, Atsushi
    Ta Viet Ton
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (07) : 3100 - 3109
  • [34] The stochastic nature of predator-prey cycles
    Tome, Tania
    Rodrigues, Attila L.
    Arashiro, Everaldo
    de Oliveira, Mario J.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (04) : 536 - 539
  • [35] STOCHASTIC APPROACH TO PREDATOR-PREY MODELS
    SMEACH, SC
    RUST, A
    BULLETIN OF MATHEMATICAL BIOLOGY, 1978, 40 (04) : 483 - 498
  • [36] Stochastic dynamics of predator-prey interactions
    Singh, Abhyudai
    PLOS ONE, 2021, 16 (08):
  • [37] A predator-prey model with infected prey
    Hethcote, HW
    Wang, WD
    Han, LT
    Zhien, M
    THEORETICAL POPULATION BIOLOGY, 2004, 66 (03) : 259 - 268
  • [38] A predator-prey model with diseases in both prey and predator
    Gao, Xubin
    Pan, Qiuhui
    He, Mingfeng
    Kang, Yibin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (23) : 5898 - 5906
  • [39] A predator-prey model with disease in the prey
    Chattopadhyay, J
    Arino, O
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (06) : 747 - 766
  • [40] DYNAMICAL BEHAVIORS OF A STOCHASTIC PREDATOR-PREY MODEL WITH ANTI-PREDATOR BEHAVIOR
    Kang, Ming
    Geng, Fengjie
    Zhao, Ming
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (03): : 1209 - 1224