Metallacarboranes as Photoredox Catalysts in Water

被引:32
|
作者
Guerrero, Isabel [1 ,2 ,3 ]
Kelemen, Zsolt [1 ]
Vinas, Clara [1 ]
Romero, Isabel [2 ,3 ]
Teixidor, Francesc [1 ]
机构
[1] ICMAB CSIC, Inst Ciencia Mat Barcelona, Campus UAB, Bellaterra 08193, Spain
[2] Univ Girona, Dept Quim, C-M Aurelia Campmany 69, Girona 17003, Spain
[3] Univ Girona, Serv Tecn Recerca, C-M Aurelia Campmany 69, Girona 17003, Spain
关键词
carboranes; cobalt; homogeneous catalysis; oxidation; photochemistry; AEROBIC OXIDATION; ALCOHOLS; COBALTABISDICARBOLLIDE; BORON; PHOTOOXIDATION; METALLOCENES; AMPHIPHILES; REACTIVITY; COMPLEXES; MECHANISM;
D O I
10.1002/chem.201905395
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metallacarboranes with the shape of the Greek letter theta, such as [Co(C2B9H11)(2)](-), were tested, for the first time, as efficient photoredox catalysts in the oxidation of aromatic and aliphatic alcohols in water. Their efficiency is linked to their high solubility in water, their high oxidizing power (Co4+/3+), and their absence of fluorescence on excitation, among others. In most of the studied examples, using a catalyst load of 0.4 mol % gave high yields of 90-95 % with selectivity greater than 99 %. By reducing the catalyst load to 0.01 mol %, quantitative conversion of reactants to products was achieved, in some cases with greater than 99 % yield, high catalyst efficiency reaching a turnover number of 10 000, and a higher yield with a 45 times lower concentration of catalyst. The metallacarboranes can be recovered easily by precipitation on addition of [NMe4]Cl. A pathway for the photoredox-catalyzed oxidation of alcohols is proposed.
引用
收藏
页码:5027 / 5036
页数:10
相关论文
共 50 条
  • [31] METALLACARBORANES AND THEIR CHEMISTRY
    HAWTHORNE, MF
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1988, 195 : 38 - INOR
  • [32] Metallacarboranes and metal amides
    Hughes, AK
    Johnson, AL
    Wade, K
    CONTEMPORARY BORON CHEMISTRY, 2000, (253): : 316 - 320
  • [33] Copper nanoclusters: emerging photoredox catalysts for organic bond formations
    Sagadevan, Arunachalam
    Murugesan, Kathiravan
    Bakr, Osman M.
    Rueping, Magnus
    CHEMICAL COMMUNICATIONS, 2024, 60 (94) : 13858 - 13866
  • [34] Self-catalyzing photoredox polymerization for recyclable polymer catalysts†
    Lessard, Jacob J.
    Scheutz, Georg M.
    Korpusik, Angie B.
    Olson, Rebecca A.
    Figg, C. Adrian
    Sumerlin, Brent S.
    POLYMER CHEMISTRY, 2021, 12 (15) : 2205 - 2209
  • [35] Photoredox catalysts based on earth-abundant metal complexes
    Hockin, Bryony M.
    Li, Chenfei
    Robertson, Neil
    Zysman-Colman, Eli
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (04) : 889 - 915
  • [36] Organic photoredox catalysts: tuning the operating mechanisms in the degradation of pollutants
    Blazquez-Moraleja, Alberto
    Cabezuelo, Oscar
    Martinez-Haya, Rebeca
    Schmidt, Luciana C.
    Bosca, Francisco
    Marin, Maria Luisa
    PURE AND APPLIED CHEMISTRY, 2023, 95 (08) : 899 - 912
  • [37] Nanomaterial catalysts for organic photoredox catalysis-mechanistic perspective
    Hu, Qiushi
    Yu, Xuemeng
    Gong, Shaokuan
    Chen, Xihan
    NANOSCALE, 2021, 13 (43) : 18044 - 18053
  • [38] Ion-pair reorganization regulates reactivity in photoredox catalysts
    Earley, J. D.
    Zieleniewska, A.
    Ripberger, H. H.
    Shin, N. Y.
    Lazorski, M. S.
    Mast, Z. J.
    Sayre, H. J.
    McCusker, J. K.
    Scholes, G. D.
    Knowles, R. R.
    Reid, O. G.
    Rumbles, G.
    NATURE CHEMISTRY, 2022, 14 (07) : 746 - +
  • [39] Development of Cyanopyridazine Derivatives as Photoredox Catalysts and Evaluation of their Catalytic Performance
    Tang, Yinhong
    Liu, Yan
    Zhu, Peng
    Pang, Junsen
    Peng, Yungui
    ADVANCED SYNTHESIS & CATALYSIS, 2024, 366 (11) : 2527 - 2533
  • [40] Ion-pair reorganization regulates reactivity in photoredox catalysts
    J. D. Earley
    A. Zieleniewska
    H. H. Ripberger
    N. Y. Shin
    M. S. Lazorski
    Z. J. Mast
    H. J. Sayre
    J. K. McCusker
    G. D. Scholes
    R. R. Knowles
    O. G. Reid
    G. Rumbles
    Nature Chemistry, 2022, 14 : 746 - 753