A sparse parallel hybrid Monte Carlo algorithm for matrix computations

被引:0
|
作者
Branford, S [1 ]
Weihrauch, C [1 ]
Alexandrov, V [1 ]
机构
[1] Univ Reading, Sch Syst Engn, Adv Comp & Emerging Technol Ctr, Reading RG6 6AY, Berks, England
来源
关键词
Monte Carlo method; matrix inversion; sparse matrices;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we introduce a new algorithm, based on the successful work of Fathi and Alexandrov, on hybrid Monte Carlo algorithms for matrix inversion and solving systems of linear algebraic equations. This algorithm consists of two parts, approximate inversion by Monte Carlo and iterative refinement using a deterministic method. Here we present a parallel hybrid Monte Carlo algorithm, which uses Monte Carlo to generate an approximate inverse and that improves the accuracy of the inverse with an iterative refinement. The new algorithm is applied efficiently to sparse non-singular matrices. When we are solving a system of linear algebraic equations, Bx = b, the inverse matrix is used to compute the solution vector x = B(-1)b. We present results that show the efficiency of the parallel hybrid Monte Carlo algorithm in the case of sparse matrices.
引用
收藏
页码:743 / 751
页数:9
相关论文
共 50 条
  • [41] TUNING THE HYBRID MONTE-CARLO ALGORITHM
    GUPTA, R
    KILCUP, GW
    SHARPE, SR
    PHYSICAL REVIEW D, 1988, 38 (04): : 1278 - 1287
  • [42] Choice of integrator in the hybrid Monte Carlo algorithm
    Takaishi, T
    COMPUTER PHYSICS COMMUNICATIONS, 2000, 133 (01) : 6 - 17
  • [43] Parallel tridiagonalization algorithm of a sparse symmetric matrix
    Gu, Yi
    Gu, Yuan
    Qingdao Daxue Xuebao/Journal of Qingdao University, 1998, 11 (01): : 14 - 18
  • [44] Experiences with the polynomial Hybrid Monte Carlo algorithm
    Frezzotti, R
    Jansen, K
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 943 - 945
  • [45] Tempered fermions in the hybrid Monte Carlo algorithm
    Boyd, G
    NUCLEAR PHYSICS B, 1998, : 341 - 344
  • [46] Critical dynamics of the Hybrid Monte Carlo algorithm
    Lippert, T
    Bali, G
    Eicker, N
    Giusti, L
    Glassner, U
    Gusken, S
    Hoeber, H
    Martinelli, G
    Rapuano, F
    Ritzenhofer, G
    Schilling, K
    Spitz, A
    Viehoff, J
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 946 - 948
  • [47] Ordering unstructured meshes for sparse matrix computations on leading parallel systems
    Oliker, L
    Li, XY
    Heber, G
    Biswas, R
    PARALLEL AND DISTRIBUTED PROCESSING, PROCEEDINGS, 2000, 1800 : 497 - 503
  • [48] Multi-pass mapping schemes for parallel sparse matrix computations
    Malkowski, K
    Raghavan, P
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 1, PROCEEDINGS, 2005, 3514 : 245 - 255
  • [49] Parallel sparse matrix computations using the PINEAPL Library: A performance study
    Krommer, AR
    EURO-PAR '98 PARALLEL PROCESSING, 1998, 1470 : 804 - 811
  • [50] A Parallel Monte-Carlo Tree Search Algorithm
    Cazenave, Tristan
    Jouandeau, Nicolas
    COMPUTERS AND GAMES, 2008, 5131 : 72 - 80