Arctic climate change in winter is tightly linked to changes in the strength of surface temperature inversions, which occur frequently in the present climate as Arctic air masses form during polar night. Recent work proposed that, in a warmer climate, increasing low-cloud optical thickness of maritime air advected over high-latitude landmasses during polar night could suppress the formation of Arctic air masses, amplifying winter warming over continents and sea ice. But this mechanism was based on single-column simulations that could not assess the role of fractional cloud cover change. This paper presents two-dimensional cloud-resolving model simulations that support the single-column model results: low-cloud optical thickness and duration increase strongly with initial air temperature, slowing the surface cooling rate as the climate is warmed. The cloud-resolving model cools less at the surface than the single-column model, and the sensitivity of its cooling to warmer initial temperatures is also higher, because it produces cloudier atmospheres with stronger lower-tropospheric mixing and distributes cloud-top cooling over a deeper atmospheric layer with larger heat capacity. Resolving larger-scale cloud turbulence has the greatest impact on the microphysics schemes that best represent general observed features of mixed-phase clouds, increasing their sensitivity to climate warming. These findings support the hypothesis that increasing insulation of the high-latitude land surface by low clouds in a warmer world could act as a strong positive feedback in future climate change and suggest studying Arctic air formation in a three-dimensional climate model.
机构:
Department of Earth Sciences,Zhejiang UniversityDepartment of Earth Sciences,Zhejiang University
LI Xiaofan
SHEN Xinyong
论文数: 0引用数: 0
h-index: 0
机构:
Key Laboratory of Meteorological Disaster of the Ministry of Education,Nanjing University of Information Science and TechnologyDepartment of Earth Sciences,Zhejiang University
SHEN Xinyong
LIU Jia
论文数: 0引用数: 0
h-index: 0
机构:
Key Laboratory of Meteorological Disaster of the Ministry of Education,Nanjing University of Information Science and TechnologyDepartment of Earth Sciences,Zhejiang University
机构:
Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China
Sci Syst & Applicat Inc, Lanham, MD USAChinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China
Wang, Donghai
Li, Xiaofan
论文数: 0引用数: 0
h-index: 0
机构:
NOAA, NESDIS, Off Res & Applicat, Camp Springs, MD USAChinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China
Li, Xiaofan
Tao, Wei-Kuo
论文数: 0引用数: 0
h-index: 0
机构:
NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USAChinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China
Tao, Wei-Kuo
Liu, Ying
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R ChinaChinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China
Liu, Ying
Zhou, Haiguang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R ChinaChinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China