Quantum codes from skew constacyclic codes over the ring Fq[u, v]/⟨u2-1, v2-1, uv - vu⟩

被引:31
|
作者
Bag, Tushar [1 ]
Dinh, Hai Q. [2 ,3 ]
Upadhyay, Ashish K. [1 ]
Bandi, Ramakrishna [4 ]
Yamaka, Woraphon [5 ]
机构
[1] Indian Inst Technol Patna, Dept Math, Patna 801103, Bihar, India
[2] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[4] Int Inst Informat Technol Naya Raipur, Dept Math, Atal Nagar 493661, India
[5] Chiang Mai Univ, Fac Econ, Ctr Excellence Econometr, Chiang Mai 52000, Thailand
关键词
Skew constacyclic codes; Dual codes; Quantum error-correcting codes; CYCLIC CODES; CONSTRUCTION;
D O I
10.1016/j.disc.2019.111737
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study uantum error-correcting codes from skew constacyclic codes over the ring R = F-q[u, v]/< u(2) - 1, v(2) - 1, uv - vu >, where q = p(m) for any odd prime p and positive integer m. We decompose skew constacyclic codes over the ring R as a direct sum of skew constacyclic codes over F-q. Self-dual skew constacyclic codes over the ring R are characterized. Necessary and sufficient conditions for skew negacyclic and skew constacyclic codes to be dual-containing are obtained. As an application, we construct new quantum error-correcting codes from skew constacyclic codes over F-q. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Constacyclic codes over the non-chain finite commutative ring Z4[u,v]/⟨u2 - u, v2, uv⟩
    Gowdhaman, Karthick
    Gulliver, T. Aaron
    Mohan, Cruz
    Chinnapillai, Durairajan
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (06): : 1867 - 1885
  • [32] CONSTACYCLIC AND QUASI-TWISTED CODES OVER Zq[u]/(u2-1) AND NEW Z4-LINEAR CODES
    Bellil, Amina
    Guenda, Kenza
    Aydin, Nuh
    Liu, Peihan
    Gulliver, T. Aaron
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (06) : 1877 - 1892
  • [33] Generators of negacyclic codes over Fp[u, v]/⟨u2, v2, uv, vu⟩ of length ps
    Choi, Hyun Seung
    Kim, Boran
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [34] Constacyclic codes over the ring Fq + vFq + v2Fq and their applications of constructing new non-binary quantum codes
    Ma, Fanghui
    Gao, Jian
    Fu, Fang-Wei
    QUANTUM INFORMATION PROCESSING, 2018, 17 (06)
  • [35] Quantum codes from (1+βu)-constacyclic codes over Fpm + uFpm
    Biswas, Soumak
    Bhaintwal, Maheshanand
    PROCEEDINGS OF THE 2020 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS-2020), 2020,
  • [36] Hermitian dual-containing constacyclic codes over Fq2 + v1Fq2 + ... + vrFq2 and new quantum codes
    Wang, Yu
    Kai, Xiaoshan
    Sun, Zhonghua
    Zhu, Shixin
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (01): : 145 - 158
  • [37] Self-Dual Double Circulant, Self-Dual Double Negacirculant and LCD Double Negacirculant Codes Over the Ring Fq[u,v]/⟨u2 -u, v2-v, uv-vu⟩
    Dinh, Hai Q.
    Yadav, Bhanu Pratap
    Nguyen, Bac T.
    Upadhyay, Ashish Kumar
    Yamaka, Woraphon
    IEEE ACCESS, 2023, 11 : 92898 - 92912
  • [38] MACWILLIAMS IDENTITIES OF THE LINEAR CODES OVER Z4[u,v]/⟨u2,v2,uv,vu⟩
    Caliskan, B.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (02): : 291 - 297
  • [39] Constacyclic codes over Fq[u1, u2, ..., uk]/(u3i - ui, uiuj - ujui ) and their applications of constructing quantum codes
    Ji, Zhulin
    Zhang, Shunhua
    QUANTUM INFORMATION PROCESSING, 2022, 22 (01)
  • [40] On a Class of (δ plus αu2)-Constacyclic Codes over Fq[u] =/⟨u4⟩
    Cao, Yuan
    Cao, Yonglin
    Gao, Jian
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (07) : 1438 - 1445