Vortex lattice structural transitions: A Ginzburg-Landau model approach

被引:15
|
作者
Klironomos, AD [1 ]
Dorsey, AT [1 ]
机构
[1] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
关键词
D O I
10.1103/PhysRevLett.91.097002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the rhombic to square vortex lattice phase transition in anisotropic superconductors using a variant of Ginzburg-Landau theory. The mean-field phase diagram is determined to second order in the anisotropy parameter, and shows a reorientation transition of the square vortex lattice with respect to the crystal lattice. We then derive the long-wavelength elastic moduli of the lattices, and use them to show that thermal fluctuations produce a reentrant rhombic to square lattice transition line, similar to recent studies which used a nonlocal London model.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Uniqueness of symmetric vortex solutions in the Ginzburg-Landau model of superconductivity
    Alama, S
    Bronsard, L
    Giorgi, T
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (02) : 399 - 424
  • [32] TRANSITIONS TO CHAOS IN THE GINZBURG-LANDAU EQUATION
    MOON, HT
    HUERRE, P
    REDEKOPP, LG
    PHYSICA D, 1983, 7 (1-3): : 135 - 150
  • [33] Global stabilization of a nonlinear Ginzburg-Landau model of vortex shedding
    Aamo, OM
    Krstic, M
    EUROPEAN JOURNAL OF CONTROL, 2004, 10 (02) : 105 - 116
  • [34] Boundary control of the linearized Ginzburg-Landau model of vortex shedding
    Aamo, OM
    Smyshlyaev, A
    Krstic, M
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 43 (06) : 1953 - 1971
  • [35] On the properties of a single vortex solution of Ginzburg-Landau model of superconductivity
    Coskun, Erhan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 568
  • [36] Elliptic vortex beam in a fractional complex Ginzburg-Landau model
    Yang, Junxing
    Zhu, Xing
    Peng, Xi
    He, Yingji
    Wang, Xiaojun
    Qiu, Yunli
    JOURNAL OF OPTICS, 2021, 23 (11)
  • [37] Simple Ginzburg-Landau theory for vortex lattice transformations in fourfold symmetric superconductors
    Yeo, J
    Ko, MK
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 42 (01) : 178 - 182
  • [38] Random Ginzburg-Landau model revisited: Reentrant phase transitions
    Buceta, J
    Parrondo, JMR
    de la Rubia, FJ
    PHYSICAL REVIEW E, 2001, 63 (03): : 031103 - 031103
  • [39] Relationship between the generalized lattice model and the Ginzburg-Landau theory
    Zakharov, AY
    Zakharov, MA
    Loginova, OV
    TECHNICAL PHYSICS LETTERS, 2004, 30 (05) : 404 - 408
  • [40] Relationship between the generalized lattice model and the Ginzburg-Landau theory
    A. Yu. Zakharov
    M. A. Zakharov
    O. V. Loginova
    Technical Physics Letters, 2004, 30 : 404 - 408