Least square control problems in nonreflexive spaces

被引:11
|
作者
Desch, W
Milota, J
Schappacher, W
机构
[1] Graz Univ, Inst Math, A-8010 Graz, Austria
[2] Charles Univ, Dept Math Anal, Prague 18600 8, Czech Republic
关键词
D O I
10.1007/s002330010024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a control problem in a Banach space with a bounded observer, but an unbounded controller which takes values in the extrapolated Favard class. A least square regulator problem can be formulated if the observer and the admissible controls take values in Hilbert spaces. We prove that for this type of LQR-problem the value function is given by a Riccati operator, and that a bounded state feedback based on the Riccati operator yields the optimal control.
引用
收藏
页码:337 / 357
页数:21
相关论文
共 50 条
  • [21] On Diagonal Subdifferential Operators in Nonreflexive Banach Spaces
    Iusem, A. N.
    Svaiter, Benar Fux
    SET-VALUED AND VARIATIONAL ANALYSIS, 2012, 20 (01) : 1 - 14
  • [22] NONEXISTENCE OF SOLUTIONS OF DIFFERENTIAL EQUATIONS IN NONREFLEXIVE SPACES
    CELLINA, A
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (06) : 1069 - 1072
  • [24] Monotone type operators in nonreflexive Banach spaces
    Yuqing Chen
    Yeol Je Cho
    Fixed Point Theory and Applications, 2014
  • [25] On Diagonal Subdifferential Operators in Nonreflexive Banach Spaces
    A. N. Iusem
    Benar Fux Svaiter
    Set-Valued and Variational Analysis, 2012, 20 : 1 - 14
  • [26] Error estimates in Sobolev spaces for moving least square approximations
    Armentano, MG
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (01) : 38 - 51
  • [27] Parallel Monte Carlo methods for least square problems
    Fathi-Vajargah, B
    Taft, K
    Vajargah, KF
    CCCT 2003, VOL 4, PROCEEDINGS: COMPUTER, COMMUNICATION AND CONTROL TECHNOLOGIES: I, 2003, : 299 - 304
  • [28] On regularization of least square problems via quadratic constraints
    Fozunbal, Majid
    2007 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol III, Pts 1-3, Proceedings, 2007, : 1389 - 1392
  • [29] Infinite horizon Riccati operators in nonreflexive spaces
    Desch, W
    Schappacher, W
    Fasangova, E
    Milota, J
    EVOLUTION EQUATIONS AND THEIR APPLICATIONS IN PHYSICAL AND LIFE SCIENCES, 2001, 215 : 247 - 254
  • [30] Monotone type operators in nonreflexive Banach spaces
    Chen, Yuqing
    Cho, Yeol Je
    FIXED POINT THEORY AND APPLICATIONS, 2014,