Ideal Connes-Amenability of Dual Banach Algebras

被引:9
|
作者
Minapoor, Ahmad [1 ]
Bodaghi, Abasalt [2 ]
Bagha, Davood Ebrahimi [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Cent Tehran Branch, Tehran, Iran
[2] Islamic Azad Univ, Dept Math, Garmsar Branch, Garmsar, Iran
关键词
Dual Banach algebra; Connes-amenability; ideal amenability; WEAK AMENABILITY; VIRTUAL DIAGONALS; DERIVATIONS;
D O I
10.1007/s00009-017-0970-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following Runde, we define the concept of ideal Connes-amenability for dual Banach algebras. For an Arens regular dual Banach algebra A, we prove that the ideal Connes-amenability of A**, the second dual of A necessities ideal Connes-amenability of A. As a typical example, we show that von Neumann algebras are always ideally Connes-amenable. For a locally compact group G, the Fourier-Stieltjes algebra of G is ideally Connes-amenable, but not ideally amenable.
引用
收藏
页数:12
相关论文
共 50 条