Three counterexamples in the theory of inertial manifolds

被引:15
|
作者
Romanov, AV [1 ]
机构
[1] Russian Acad Sci, All Russia Inst Sci & Tech Informat, Moscow 117901, Russia
关键词
smooth inertial manifold; dissipative semilinear parabolic equation; reaction-diffusion equation; inertial manifold (absolutely) normally hyperbolic on the stationary set; asymptotic finite-dimensionality;
D O I
10.1007/BF02674562
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An example of a dissipative semilinear parabolic equation in a Hilbert space without smooth inertial manifolds is constructed. Moreover, the attractor of this equation can be embedded in no finite-dimensional C-1 invariant submanifold of the phase space. The class of scalar reaction-diffusion equations in bounded domains Omega subset of R-m without inertial manifolds M subset of L-2(Omega) with the property of absolute normal hyperbolicity on the set E of stationary points of the phase semiflow is described. Such equations may have inertial manifolds with the weaker property of normal hyperbolicity on E. Three-dimensional reaction-diffusion systems without inertial manifolds normally hyperbolic at stationary points are found.
引用
收藏
页码:378 / 385
页数:8
相关论文
共 50 条
  • [41] A FAMILY OF COUNTEREXAMPLES IN ERGODIC-THEORY
    DELJUNCO, A
    ISRAEL JOURNAL OF MATHEMATICS, 1983, 44 (02) : 160 - 188
  • [42] Counterexamples to the causal theory of proper names
    Raclavsky, J
    FILOSOFICKY CASOPIS, 2005, 53 (05): : 669 - 690
  • [43] SOME COUNTEREXAMPLES TO THEORY OF CONFIDENCE INTERVALS
    ROBINSON, GK
    BIOMETRIKA, 1975, 62 (01) : 155 - 161
  • [44] COUNTEREXAMPLES IN NONSTANDARD MEASURE-THEORY
    ALDAZ, JM
    LOEB, PA
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (03): : 257 - 261
  • [45] SOME COUNTEREXAMPLES IN THEORY OF SPECHT MODULES
    JAMES, GD
    JOURNAL OF ALGEBRA, 1977, 46 (02) : 457 - 461
  • [46] Kink manifolds in a three-component scalar field theory
    Izquierdo, AA
    Sánchez, JCB
    León, MAG
    Mayado, MDL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (11): : 3607 - 3626
  • [47] TIME-DISCRETIZATION AND INERTIAL MANIFOLDS
    DEMENGEL, F
    GHIDAGLIA, JM
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1989, 23 (03): : 395 - 404
  • [48] Some closure results for inertial manifolds
    Robinson J.C.
    Journal of Dynamics and Differential Equations, 1997, 9 (3) : 373 - 400
  • [49] Inertial manifolds for a Smoluchowski equation on a circle
    Vukadinovic, Jesenko
    NONLINEARITY, 2008, 21 (07) : 1533 - 1545
  • [50] Approximate inertial manifolds for thermodiffusion equations
    Sammartino, M
    Sciacca, V
    WASCOM 2003: 12TH CONFERENCE ON WAVES AND STABILITY IN CONTINUOUS MEDIA, PROCEEDINGS, 2004, : 494 - 499