Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data

被引:13
|
作者
Zhang, Chuncheng [1 ,2 ,3 ,4 ]
Song, Sutao [5 ]
Wen, Xiaotong [6 ]
Yao, Li [1 ,2 ,3 ,4 ]
Long, Zhiying [1 ,2 ,3 ]
机构
[1] Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, IDG McGovern Inst Brain Res, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Ctr Collaborat & Innovat Brain & Learning Sci, Beijing 100875, Peoples R China
[4] Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China
[5] Jinan Univ, Sch Educ & Psychol, Jinan 250022, Shandong, Peoples R China
[6] Renmin Univ China, Dept Psychol, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
fMRI; Feature selection; Sparse representation; Decoding; REPRESENTATIONS; CLASSIFICATION; REGRESSION; NEURONS; CORTEX; MODEL;
D O I
10.1016/j.jneumeth.2014.12.021
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Feature selection plays an important role in improving the classification accuracy of multivariate classification techniques in the context of fMRI-based decoding due to the "few samples and large features" nature of functional magnetic resonance imaging (fMRI) data. Recently, several sparse representation methods have been applied to the voxel selection of fMRI data. Despite the low computational efficiency of the sparse representation methods, they still displayed promise for applications that select features from fMRI data. New method: In this study, we proposed the Laplacian smoothed L0 norm (LSL0) approach for feature selection of fMRI data. Based on the fast sparse decomposition using smoothed L0 norm (SL0) (Mohimani, 2007), the LSL0 method used the Laplacian function to approximate the L0 norm of sources. Results: Results of the simulated and real fMRI data demonstrated the feasibility and robustness of LSL0 for the sparse source estimation and feature selection. Comparison with existing methods: Simulated results indicated that LSL0 produced more accurate source estimation than SL0 at high noise levels. The classification accuracy using voxels that were selected by LSL0 was higher than that by SL0 in both simulated and real fMRI experiment. Moreover, both LSL0 and SL0 showed higher classification accuracy and required less time than ICA and t-test for the fMRI decoding. Conclusions: LSL0 outperformed SL0 in sparse source estimation at high noise level and in feature selection. Moreover, LSL0 and SL0 showed better performance than ICA and t-test for feature selection. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 24
页数:10
相关论文
共 50 条
  • [31] SPARSE AND LOW RANK DECOMPOSITION USING l0 PENALTY
    Ulfarsson, M. O.
    Solo, V.
    Marjanovic, G.
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3312 - 3316
  • [32] Smoothed l0 Norm Regularization for Sparse-View X-Ray CT Reconstruction
    Li, Ming
    Zhang, Cheng
    Peng, Chengtao
    Guan, Yihui
    Xu, Pin
    Sun, Mingshan
    Zheng, Jian
    BIOMED RESEARCH INTERNATIONAL, 2016, 2016
  • [33] AN IMPROVED PROPORTIONATE NLMS ALGORITHM BASED ON THE l0 NORM
    Paleologu, Constantin
    Benesty, Jacob
    Ciochina, Silviu
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 309 - 312
  • [34] 2-D Sparse Decomposition and L0 Norm Minimization in SAR Imaging
    Lazarov, Andon
    Minchev, Dimitar
    2020 21ST INTERNATIONAL RADAR SYMPOSIUM (IRS 2020), 2020, : 45 - 50
  • [35] A Convolutional Dictionary Learning based l1 Norm Error with Smoothed l0 Norm Regression
    Kumamoto, Kaede
    Matsuo, Shinnosuke
    Kuroki, Yoshimitsu
    2019 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), 2019,
  • [36] Model-Based Photoacoustic Image Reconstruction using Compressed Sensing and Smoothed L0 Norm
    Mozaffarzadeh, Moein
    Mahloojifar, Ali
    Nasiriavanaki, Mohammadreza
    Orooji, Mahdi
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2018, 2018, 10494
  • [37] Blind Deconvolution Using an Improved L0 Sparse Representation
    Ye Pengzhao
    Feng Huajun
    Li Qi
    Xu Zhihai
    Chen Yueting
    7TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTOELECTRONICS MATERIALS AND DEVICES FOR SENSING AND IMAGING, 2014, 9284
  • [38] A fast reconstruction algorithm for bioluminescence tomography based on smoothed l0 norm regularization
    He, Xiaowei
    Yu, Jingjing
    Geng, Guohua
    Guo, Hongbo
    MIPPR 2013: PARALLEL PROCESSING OF IMAGES AND OPTIMIZATION AND MEDICAL IMAGING PROCESSING, 2013, 8920
  • [39] A MODIFIED ALGORITHM BASED ON SMOOTHED L0 NORM IN COMPRESSIVE SENSING SIGNAL RECONSTRUCTION
    Wang, Linyu
    Ye, Pengfei
    Xiang, Jianhong
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1812 - 1816
  • [40] Stability Analysis of l0,∞-Norm Based Convolutional Sparse Coding Using Stripe Coherence
    Fu, Yuli
    Zhu, Tao
    Xiang, Youjun
    Chen, Zhen
    Cai, Lei
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 5810 - 5823