Comprehensive Investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 System by Operando High Resolution Synchrotron X-ray Diffraction

被引:237
|
作者
Bianchini, M. [1 ,2 ,3 ,5 ]
Fauth, F. [4 ]
Brisset, N. [2 ]
Weill, F. [2 ]
Suard, E. [3 ]
Masquelier, C. [1 ,5 ,6 ]
Croguennec, L. [2 ,5 ,6 ]
机构
[1] Univ Picardie Jules Verne, CNRS UMR 7314, Lab Reactivite & Chim Solides, F-80039 Amiens 1, France
[2] Univ Bordeaux, CNRS, Bordeaux INP, ICMCB UPR 9048, F-33600 Pessac, France
[3] Inst Max Von Laue Paul Langevin, F-38000 Grenoble, France
[4] CELLS ALBA Synchrotron, E-08290 Barcelona, Spain
[5] FR CNRS 3459, Reseau Francais Stockage Electrochim Energie, RS2E, F-80039 Amiens, France
[6] FR CNRS 3104, ALISTORE ERI European Res Inst, F-80039 Amiens, France
关键词
SODIUM-ION BATTERIES; CARBON-COATED NA3V2(PO4)(3); POWDER DIFFRACTION; ELECTROCHEMICAL PERFORMANCE; VANADIUM FLUOROPHOSPHATE; INSERTION PROPERTIES; ELECTRODE MATERIALS; CATHODE MATERIALS; PHASE-DIAGRAM; HYBRID-ION;
D O I
10.1021/acs.chemmater.5b00361
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Na3V2(PO4)(2)F-3 is a positive electrode material for Na-ion batteries which is attracting strong interest due to its high capacity, rate capability, and long-term cycling stability. The sodium extraction mechanism from this material has been always described in the literature as a straightforward solid solution, but several hints point toward a more complicated phase diagram. In this work we performed high angular resolution synchrotron radiation diffraction measurements, realized operando on sodium batteries upon charge. We reveal an extremely interesting phase diagram, created by the successive crystallization of four intermediate phases before the end composition NaV2(PO4)(2)F-3 is reached. Only one of these phases undergoes a solid solution reaction, in the interval between 1.8 and 1.3 Na per formula unit. The ability to resolve weak Bragg reflections allowed us to reveal differences in terms of symmetry among the phases, to determine their previously unknown space groups, and to correlate them with sodium (dis)ordering in the structure. Rietveld refinements enabled us to follow fine structural modifications in great detail. Intermediate identified phases are not simply described by their unit cell parameters, but bond-length variations can be tracked, as well as polyhedral distortions and site occupancy factors for mobile sodium ions. For NaV2(PO4)(2)F-3 a full crystal structure determination was also carried out for the first time directly from operando measurements, assigning it to the Cmc2(1) space group and revealing two vanadium environments: V3+ and V5+. Our study demonstrates that improved angular resolution and high intensity diffraction data are key parameters for direct observation of fine reaction pathways in electrode materials and that the obtained insight is crucial for the understanding of (de)intercalation mechanisms in Na-ion batteries.
引用
收藏
页码:3009 / 3020
页数:12
相关论文
共 50 条
  • [21] A Combined Operando Synchrotron X-ray Absorption Spectroscopy and First-Principles Density Functional Theory Study to Unravel the Vanadium Redox Paradox in the Na3V2(PO4)2F3-Na3V2(PO4)2FO2 Compositions
    Nguyen, Long H. B.
    Iadecola, Antonella
    Belin, Stephanie
    Olchowka, Jacob
    Masquelier, Christian
    Carlier, Dany
    Croguennec, Laurence
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (43): : 23511 - 23522
  • [22] Operando Tracking of Transport Properties in Na3V2(PO4)2F3 and LiFePO4 Battery Electrodes by In-Plane Measurements
    Perju, Audrey
    Mondal, Brinti
    Maurel, Victor
    Rabuel, Francois
    Morcrette, Mathieu
    Taberna, Pierre-Louis
    Simon, Patrice
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (11)
  • [23] High Rate Performance for Carbon-Coated Na3V2(PO4)2F3 in Na-Ion Batteries
    Broux, Thibault
    Fauth, Francois
    Hall, Nikita
    Chatillon, Yohann
    Bianchini, Matteo
    Bamine, Tahya
    Leriche, Jean-Bernard
    Suard, Emmanuelle
    Carlier, Dany
    Reynier, Yvan
    Simonin, Loic
    Masquelier, Christian
    Croguennec, Laurence
    SMALL METHODS, 2019, 3 (04)
  • [24] Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries
    Chen, Yanjun
    Xu, Youlong
    Sun, Xiaofei
    Zhang, Baofeng
    He, Shengnan
    Li, Long
    Wang, Chao
    JOURNAL OF POWER SOURCES, 2018, 378 : 423 - 432
  • [25] Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na3V2(PO4)2F3
    Liu, Zigeng
    Hu, Yan-Yan
    Dunstan, Matthew T.
    Huo, Hua
    Hao, Xiaogang
    Zou, Huan
    Zhong, Guiming
    Yang, Yong
    Grey, Clare P.
    CHEMISTRY OF MATERIALS, 2014, 26 (08) : 2513 - 2521
  • [26] Unveiling the Charge Storage Mechanism in Nonaqueous and Aqueous Zn/Na3V2(PO4)2F3 Batteries
    Park, Min Je
    Manthiram, Arumugam
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (05) : 5015 - 5023
  • [27] Cycling properties of Na3V2(PO4)2F3 as positive material for sodium-ion batteries
    Pianta, Nicolo
    Locatelli, Davide
    Ruffo, Riccardo
    IONICS, 2021, 27 (05) : 1853 - 1860
  • [28] Temperature-dependent defect evolution and electrochemical performance enhancement of Na3V2(PO4)2F3
    Zhai, Xuezhen
    Chen, Xiaohong
    Zhang, Qijie
    Wu, Yongqi
    Wang, Xuzhe
    Dai, Haiyang
    Chen, Jing
    Shang, Cui
    Liu, Dewei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 952
  • [29] Effect of Crystal Structure and Morphology on Na3V2(PO4)2F3 Performances for Na-Ion Batteries
    Mukherjee, Ayan
    Sharabani, Tali
    Sharma, Rosy
    Okashy, Sivan
    Noked, Malachi
    BATTERIES & SUPERCAPS, 2020, 3 (06) : 510 - 518
  • [30] Facilitating Na-ion transport and enhancing energy density of Na3V2(PO4)3 through Na3V3(PO4)4/Na3V2(PO4)3 heterostructure design
    Li, Zhaojin
    Di, Yunbo
    Wang, Yifei
    Zhang, Di
    Sun, Huilan
    Sun, Qujiang
    Wang, Qiujun
    Yuan, Fei
    Li, Ranran
    Wang, Bo
    CHEMICAL ENGINEERING JOURNAL, 2025, 510