Artery/Vein Classification of Retinal Vasculature based on Cellular Automata

被引:1
|
作者
Aranda-Martinez, Carlos [1 ]
Hevia-Montiel, Nidiyare [2 ]
Rauscher, Franziska G. [3 ,4 ]
Elena Martinez-Perez, M. [5 ]
机构
[1] Univ Nacl Autonoma Mexico, Ciencia & Ingn Comp, Merida, Yucatan, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas Estado Y, Unidad Acad, Merida, Yucatan, Mexico
[3] Univ Leipzig, Leipzig Res Ctr Civilizat Dis LIFE, Leipzig, Germany
[4] Univ Leipzig, Inst Med Informat Stat & Epidemiol IMISE, Leipzig, Germany
[5] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas IIMAS, Dept Comp Sci, Ciudad De Mexico, Mexico
关键词
Artery/Vein classification; cardiovascular diseases; automata classification; machine learning; retinal images;
D O I
10.1109/ENC53357.2021.9534820
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The segmentation and classification of blood vessels in fundus images is of great importance in the detection of cardiovascular diseases, where their morphology can be a useful indicator. While the automatic segmentation of blood vessels has been solved successfully, the automatic classification between arteries and veins (A/V) remains an unanswered question. There are some proposals that use artificial intelligence such as neural networks or methods based on deep learning, with very promising results. In this work we propose a novel method based on cellular automata with a neural network as a transition function, to classify artery and vein at the pixel level given the segmentation mask. The preliminary evaluation of this new method was carried out in a local database of 36 images, yielding an accuracy of 0.9650 and 0.9679 for arteries and veins classification, and a Dice similarity index above 0.7891 in the test set. The presented classification work paves the way for automated analysis of arteries and veins, which is specifically valuable in large data sets like our population-based sample.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Improving retinal artery and vein classification by means of a minimal path approach
    Vazquez, S. G.
    Cancela, B.
    Barreira, N.
    Penedo, M. G.
    Rodriguez-Blanco, M.
    Pena Seijo, M.
    Coll de Tuero, G.
    Antonia Barcelo, M.
    Saez, M.
    MACHINE VISION AND APPLICATIONS, 2013, 24 (05) : 919 - 930
  • [32] Artery/vein automatic classification in retinal images and vessel diameter Measurement
    Xue, Lanyan (xuelanyan@126.com), 1600, Science Press (38):
  • [33] Improving retinal artery and vein classification by means of a minimal path approach
    S. G. Vázquez
    B. Cancela
    N. Barreira
    M. G. Penedo
    M. Rodríguez-Blanco
    M. Pena Seijo
    G. Coll de Tuero
    M. A. Barceló
    M. Saez
    Machine Vision and Applications, 2013, 24 : 919 - 930
  • [34] Computerized evaluation of retinal vasculature changes in central retinal vein occlusions
    Kidd, GR
    Virata, SR
    Kylstra, JA
    Capowski, JJ
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1996, 37 (03) : 2814 - 2814
  • [35] VTG-Net: A CNN Based Vessel Topology Graph Network for Retinal Artery/Vein Classification
    Mishra, Suraj
    Wang, Ya Xing
    Wei, Chuan Chuan
    Chen, Danny Z.
    Hu, X. Sharon
    FRONTIERS IN MEDICINE, 2021, 8
  • [36] Retinal Artery and Vein Classification via Dominant Sets Clustering-Based Vascular Topology Estimation
    Zhao, Yitian
    Xie, Jianyang
    Su, Pan
    Zheng, Yalin
    Liu, Yonghuai
    Cheng, Jun
    Liu, Jiang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 : 56 - 64
  • [37] Contextual and Hierarchical Classification of Satellite Images Based on Cellular Automata
    Espinola, Moises
    Piedra-Fernandez, Jose A.
    Ayala, Rosa
    Iribarne, Luis
    Wang, James Z.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (02): : 795 - 809
  • [38] Cellular Automata Based Algorithm for Image Density Classification Task
    Anghelescu, Petre
    Stirbu, Cosmin
    PROCEEDINGS OF THE 2014 6TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI), 2014,
  • [39] Classification of mammography images based on cellular automata and Haralick parameters
    Benmazou S.
    Merouani H.F.
    Layachi S.
    Nedjmeddine B.
    Evolving Systems, 2014, 5 (03) : 209 - 216
  • [40] HYPERHOMOCYSTEINEMIA IN RETINAL ARTERY AND RETINAL VEIN OCCLUSION
    WENZLER, EM
    RADEMAKERS, AJJM
    BOERS, GHJ
    CRUYSBERG, JRM
    WEBERS, CAB
    DEUTMAN, AF
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 1993, 115 (02) : 162 - 167