Quantum information processing with superconducting circuits: a review

被引:652
|
作者
Wendin, G. [1 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci MC2, SE-41296 Gothenburg, Sweden
关键词
superconducting circuits; quantum simulation; quantum information processing; quantum control; quantum error correction; Josephson junctions; microwave resonators; POLYNOMIAL-TIME; COMPUTATIONAL-COMPLEXITY; ERROR-CORRECTION; ELECTRON SPINS; SINGLE-PHOTON; GROUND-STATE; COHERENT MANIPULATION; SILICON-CARBIDE; DICKE MODELS; FLUX QUBIT;
D O I
10.1088/1361-6633/aa7e1a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of quantum supremacy with fifty qubits is anticipated in just a few years. Quantum supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of superconducting devices, systems and applications. As such, the discussion of superconducting qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry.
引用
收藏
页数:50
相关论文
共 50 条
  • [31] Dephasing-Insensitive Quantum Information Storage and Processing with Superconducting Qubits
    Guo, Qiujiang
    Zheng, Shi-Biao
    Wang, Jianwen
    Song, Chao
    Zhang, Pengfei
    Li, Kemin
    Liu, Wuxin
    Deng, Hui
    Huang, Keqiang
    Zheng, Dongning
    Zhu, Xiaobo
    Wang, H.
    Lu, C. -Y.
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2018, 121 (13)
  • [32] Design and Testing of Superconducting Microwave Passive Components for Quantum Information Processing
    Ku, H. S.
    Mallet, F.
    Vale, L. R.
    Irwin, K. D.
    Russek, S. E.
    Hilton, G. C.
    Lehnert, K. W.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2011, 21 (03) : 452 - 455
  • [33] Quantum Information Processing with Superconducting Nanowire Single-Photon Detectors
    Yamamoto, Takashi
    IEICE TRANSACTIONS ON ELECTRONICS, 2019, E102C (03): : 224 - 229
  • [34] Hybrid superconducting photonic-phononic chip for quantum information processing
    Xu, Xin-Biao
    Wang, Wei-Ting
    Sun, Lu-Yan
    Zou, Chang-Ling
    CHIP, 2022, 1 (03):
  • [35] Relativistic Quantum Teleportation with Superconducting Circuits
    Friis, N.
    Lee, A. R.
    Truong, K.
    Sabin, C.
    Solano, E.
    Johansson, G.
    Fuentes, I.
    PHYSICAL REVIEW LETTERS, 2013, 110 (11)
  • [36] A microwave splitter for superconducting quantum circuits
    P. Neilinger
    G. Oelsner
    M. Grajcar
    B. I. Ivanov
    I. L. Novikov
    E. V. Il’ichev
    Technical Physics Letters, 2015, 41 : 314 - 316
  • [37] Integration Technology for Superconducting Quantum Circuits
    Kawabata, Shiro
    2024 IEEE SILICON NANOELECTRONICS WORKSHOP, SNW 2024, 2024, : 9 - 10
  • [38] Superconducting quantum nano-circuits
    Guichard, W.
    Levy, L. P.
    Pannetier, B.
    Fournier, T.
    Buisson, O.
    Hekking, F. W. J.
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2010, 7 (4-8) : 474 - 496
  • [39] Transformed dissipation in superconducting quantum circuits
    Neeley, Matthew
    Ansmann, M.
    Bialczak, Radoslaw C.
    Hofheinz, M.
    Katz, N.
    Lucero, Erik
    O'Connell, A.
    Wang, H.
    Cleland, A. N.
    Martinis, John M.
    PHYSICAL REVIEW B, 2008, 77 (18):
  • [40] SUPERCONDUCTING CIRCUITS Quantum phase slips
    Haviland, David
    NATURE PHYSICS, 2010, 6 (08) : 565 - 566