Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network

被引:388
|
作者
Kahn, Ralph A. [1 ]
Gaitley, Barbara J. [2 ]
Garay, Michael J. [4 ]
Diner, David J. [2 ]
Eck, Thomas F. [3 ]
Smirnov, Alexander [5 ]
Holben, Brent N. [1 ]
机构
[1] NASA, Atmospheres Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[3] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA
[4] Raytheon Co, Pasadena, CA 91101 USA
[5] Sigma Space Corp, Lanham, MD 20706 USA
关键词
MATTER COMPONENT CONCENTRATIONS; REMOTE-SENSING OBSERVATIONS; OPTICAL DEPTH; SIZE DISTRIBUTIONS; RADIOMETRIC CALIBRATION; SOUTHERN AFRICA; DRY SEASON; IN-SITU; MISR; AERONET;
D O I
10.1029/2010JD014601
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A statistical approach is used to assess the quality of the Multiangle Imaging SpectroRadiometer (MISR) version 22 (V22) aerosol products. Aerosol optical depth (AOD) retrieval results are improved relative to the early postlaunch values reported by [Kahn et al. (2005)], which varied with particle type category. Overall, about 70% to 75% of MISR AOD retrievals fall within 0.05 or 20% x AOD of the paired validation data from the Aerosol Robotic Network (AERONET), and about 50% to 55% are within 0.03 or 10% x AERONET AOD, except at sites where dust or mixed dust and smoke are commonly found. Retrieved particle microphysical properties amount to categorical values, such as three size groupings: "small," "medium," and "large." For particle size, ground-based AERONET sun photometer Angstrom exponents are used to assess statistically the corresponding MISR values, which are interpreted in terms of retrieved size categories. Coincident single-scattering albedo (SSA) and fraction AOD spherical data are too limited for statistical validation. V22 distinguishes two or three size bins, depending on aerosol type, and about two bins in SSA (absorbing vs. nonabsorbing), as well as spherical vs. nonspherical particles, under good retrieval conditions. Particle type sensitivity varies considerably with conditions and is diminished for midvisible AODs below about 0.15 or 0.2. On the basis of these results, specific algorithm upgrades are proposed and are being investigated by the MISR team for possible implementation in future versions of the product.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Aerosol properties derived from aircraft multiangle imaging over Monterey Bay
    Kahn, R
    Banerjee, P
    McDonald, D
    Martonchik, J
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D11): : 11977 - 11995
  • [32] Maritime component in aerosol optical models derived from Aerosol Robotic Network data
    Smirnov, A
    Holben, BN
    Dubovik, O
    Frouin, R
    Eck, TF
    Slutsker, I
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D1)
  • [33] Diurnal variability of aerosol optical depth observed at AERONET (Aerosol Robotic Network) sites
    Smirnov, A
    Holben, BN
    Eck, TF
    Slutsker, I
    Chatenet, B
    Pinker, RT
    GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (23)
  • [34] Assessment of urban aerosol pollution over the Moscow megacity by the MAIAC aerosol product
    Zhdanova, Ekaterina Y.
    Chubarova, Natalia Y.
    Lyapustin, Alexei, I
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2020, 13 (02) : 877 - 891
  • [35] Aerosol source plume physical characteristics from space-based multiangle imaging
    Kahn, Ralph A.
    Li, W.-H.
    Moroney, Catherine
    Diner, David J.
    Martonchik, John V.
    Fishbein, Evan
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D11)
  • [36] An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space
    Diner, DJ
    Chipman, RA
    Beaudry, N
    Cairns, B
    Food, LD
    Macenka, SA
    Cunningham, TJ
    Seshadri, S
    Keller, C
    ENABLING SENSOR AND PLATFORM TECHNOLOGIES FOR SPACEBORNE REMOTE SENSING, 2005, 5659 : 88 - 96
  • [37] Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET)
    Eck, T. F.
    Holben, B. N.
    Reid, J. S.
    Giles, D. M.
    Rivas, M. A.
    Singh, R. P.
    Tripathi, S. N.
    Bruegge, C. J.
    Platnick, S.
    Arnold, G. T.
    Krotkov, N. A.
    Carn, S. A.
    Sinyuk, A.
    Dubovik, O.
    Arola, A.
    Schafer, J. S.
    Artaxo, P.
    Smirnov, A.
    Chen, H.
    Goloub, P.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [38] The spatiotemporal variations of aerosol types in representative sites of China basing on the Aerosol Robotic Network (AERONET)
    He, Xin
    Zhou, Ru
    Yao, Yuan
    Shen, Zi-Xuan
    Zhu, Jun
    Zhongguo Huanjing Kexue/China Environmental Science, 2020, 40 (02): : 485 - 496
  • [39] Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States
    Liu, Y
    Park, RJ
    Jacob, DJ
    Li, QB
    Kilaru, V
    Sarnat, JA
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D22) : 1 - 10
  • [40] Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations
    Cattrall, C
    Reagan, J
    Thome, K
    Dubovik, O
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D10) : 1 - 13