A new discretization methodology for diffusion problems on generalized polyhedral meshes

被引:114
|
作者
Brezzi, Franco
Lipnikov, Konstantin
Shashkov, Mikhail
Simoncini, Valeria
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Ist Univ Super, CeSNA, Pavia, Italy
[3] Univ Bologna, Dipartmento Matemat, CIRSA, Ravenna, Italy
[4] IMATI CNR, Pavia, Italy
关键词
finite difference; compatible discretizations; polyhedral meshes;
D O I
10.1016/j.cma.2006.10.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a family of inexpensive discretization schemes for diffusion problems on generalized polyhedral meshes with elements having non-planar faces. The material properties are described by a full tensor. We also prove superconvergence for the scalar (pressure) variable under very general assumptions. The theoretical results are confirmed with numerical experiments. In the practically important case of logically cubic meshes with randomly perturbed nodes, the mixed finite element with the lowest order Raviart-Thomas elements does not converge while the proposed mimetic method has the optimal convergence rate. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3682 / 3692
页数:11
相关论文
共 50 条
  • [41] Generalized Polynomial Complementarity Problems over a Polyhedral Cone
    Shang, Tong-tong
    Yang, Jing
    Tang, Guo-ji
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 192 (02) : 443 - 483
  • [42] Generalized Polynomial Complementarity Problems over a Polyhedral Cone
    Tong-tong Shang
    Jing Yang
    Guo-ji Tang
    Journal of Optimization Theory and Applications, 2022, 192 : 443 - 483
  • [43] Generalized Tensor Complementarity Problems Over a Polyhedral Cone
    Ling, Liyun
    Ling, Chen
    He, Hongjin
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2020, 37 (04)
  • [44] DISCRETIZATION PROBLEMS ON GENERALIZED ENTROPIES AND R-DIVERGENCES
    PARDO, L
    MORALES, D
    FERENTINOS, K
    ZOGRAFOS, K
    KYBERNETIKA, 1994, 30 (04) : 445 - 460
  • [45] Extensions of "Pade Discretization for Linear Systems With Polyhedral Lyapunov Functions" for Generalized Jordan Structures
    Sajja, Surya Shravan Kumar
    Rossi, Francesco
    Colaneri, Patrizio
    Shorten, Robert
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (08) : 2071 - 2076
  • [46] Virtual element method on polyhedral meshes for bi-harmonic eigenvalues problems
    Dassi, Franco
    Velásquez, Iván
    Computers and Mathematics with Applications, 2022, 121 : 85 - 101
  • [47] Virtual element method on polyhedral meshes for bi-harmonic eigenvalues problems
    Dassi, Franco
    Velasquez, Ivan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 121 : 85 - 101
  • [48] Benchmark 3D: Mimetic Finite Difference Method for Generalized Polyhedral Meshes
    Lipnikov, Konstantin
    Manzini, Gianmarco
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 1035 - +
  • [49] A novel cell-centered finite volume scheme with positivity-preserving property for the anisotropic diffusion problems on general polyhedral meshes
    Peng, Gang
    Gao, Zhiming
    Feng, Xinlong
    APPLIED MATHEMATICS LETTERS, 2020, 104
  • [50] A novel finite volume discretization method for advection-diffusion systems on stretched meshes
    Merrick, D. G.
    Malan, A. G.
    van Rooyen, J. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 362 : 220 - 242